【#高考# 导语】一条曲线一般都是光滑的,这样的曲线才会有切线,并且切线对于一个曲线来说是非常重要的概念,切线往往都是表示一个分子上的分量,®文档大全网就简单介绍一下切线方程怎么求。欢迎阅读参考!
高中数学切线方程怎么求
Y=X2-2X-3在(0,3)的切线方程
解:因为点(0,3)处切线的斜率为函数在(0,3)的导数值,函数的倒数为:y=2x-2,
所以点(0,3)斜率为:k=2x-2=-2
所以切线方程为:y-3=-2(x-0)(点斜式)
即2x+y-3=0
所以y=x^2-2x-3在(0,3)的切线方程为2x+y-3=0。
2、一条直线的切线方程和法线方程的关系
法线方程
法线斜率与切线斜率乘积为-1,即若法线斜率和切线斜率分别用α、β表示,则必有α*β=-1。法线可以用一元一次方程来表示,即法线方程。与导数有直接的转换关系。
区别
数学上一般不研究直线的切线方程,因为直线的切线方程就是它本身;可推知一条直线的切线与它的法线垂直;两条互相垂直的直线,两条直线的斜率乘积等于-1,即k1*k2=-1。
对于直线,法线是它的垂线;对于一般的平面曲线,法线就是切线的垂线;对于空间图形,是垂直平面。
3、曲线的切线方程公式
以P为切点的切线方程:y-f(a)=f'(a)(x-a);若过P另有曲线C的切线,切点为Q(b,f(b)),则切线为y-f(a)=f'(b)(x-a),也可y-f(b)=f'(b)(x-b),并且[f(b)-f(a)]/(b-a)=f'(b)。
如果某点在曲线上
设曲线方程为y=f(x),曲线上某点为(a,f(a))
求曲线方程求导,得到f'(x),将某点代入,得到f'(a),此即为过点(a,f(a))的切线斜率,由直线的点斜式方程,得到切线的方程。y-f(a)=f'(a)(x-a)
如果某点不在曲线上
设曲线方程为y=f(x),曲线外某点为(a,b)
求对曲线方程求导,得到f'(x),
设:切点为(x0,f(x0)),
将x0代入f'(x),得到切线斜率f'(x0),由直线的点斜式方程,得到切线的方程y-f(x0)=f'(x0)(x-x0),因为(a,b)在切线上,代入求得的切线方程,有:b-f(x0)=f'(x0)(a-x0),得到x0,代回求得的切线方程,即求得所求切线方程。
高中数学切线方程怎么求.doc