第三十三学时:14.1.4多项式除以单项式
一、学习目标:1.多项式除以单项式的运算法则及其应用.
2.多项式除以单项式的运算算理.
二、重点难点:
重 点: 多项式除以单项式的运算法则及其应用
难 点: 探索多项式与单项式相除的运算法则的过程
三、合作学习:
(一) 回顾单项式除以单项式法则
(二) 学生动手,探究新课
1. 计算下列各式:
(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.
2. 提问:①说说你是怎样计算的 ②还有什么发现吗?
(三) 总结法则
1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______
2. 本质:把多项式除以单项式转化成______________
四、精讲精练
例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)
随堂练习: 教科书 练习
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.
E、多项式除以单项式法则
第三十四学时:14.2.1 平方差公式
一、学习目标:1.经历探索平方差公式的过程.
2.会推导平方差公式,并能运用公式进行简单的运算.
二、重点难点
重 点: 平方差公式的推导和应用
难 点: 理解平方差公式的结构特征,灵活应用平方差公式.
三、合作学习
你能用简便方法计算下列各题吗?
(1)2001×1999 (2)998×1002
导入新课: 计算下列多项式的积.
(1)(x+1)(x-1) (2)(m+2)(m-2)
(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)
结论:两个数的和与这两个数的差的积,等于这两个数的平方差.
即:(a+b)(a-b)=a2-b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
例2:计算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
随堂练习
计算:
(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)
五、小结:(a+b)(a-b)=a2-b2
第三十五学时:4.2.2. 完全平方公式(一)
一、学习目标:1.完全平方公式的推导及其应用.
2.完全平方公式的几何解释.
二、重点难点:
重 点: 完全平方公式的推导过程、结构特点、几何解释,灵活应用
难 点: 理解完全平方公式的结构特征并能灵活应用公式进行计算
三、合作学习
Ⅰ.提出问题,创设情境
一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…
(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?
(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?
(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?
(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?
Ⅱ.导入新课
计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;
(5)(a+b)2=________;(6)(a-b)2=________.
两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.
(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
四、精讲精练
例1、应用完全平方公式计算:
(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2
例2、用完全平方公式计算:
(1)1022 (2)992
随堂练习
第三十六学时:14.2.2 完全平方公式(二)
一、学习目标:1.添括号法则.
2.利用添括号法则灵活应用完全平方公式
二、重点难点
重 点: 理解添括号法则,进一步熟悉乘法公式的合理利用
难 点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的.
三、合作学习
Ⅰ.提出问题,创设情境
请同学们完成下列运算并回忆去括号法则.
(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
1.在等号右边的括号内填上适当的项:
(1)a+b-c=a+( ) (2)a-b+c=a-( )
(3)a-b-c=a-( ) (4)a+b+c=a-( )
2.判断下列运算是否正确.
(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
五、精讲精练
例:运用乘法公式计算
(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2
(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)
随堂练习:教科书练习
五、小结:去括号法则
六、作业:教科书习题
第三十七学时:14.3.1用提公因式法分解因式
一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重 点: 能观察出多项式的公因式,并根据分配律把公因式提出来
难 点: 让学生识别多项式的公因式.
三、合作学习:
公因式与提公因式法分解因式的概念.
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3) a(x-3)+2b(x-3)
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.
课堂练习
1.写出下列多项式各项的公因式.
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72 (2)a2b-5ab
(3)4m3-6m2 (4)a2b-5ab+9b
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小结:
总结出找公因式的一般步骤.:
首先找各项系数的大公约数,
其次找各项中含有的相同的字母,相同字母的指数取次数最小的.
注意:(a-b)2=(b-a)2
六、作业 1、教科书习题
2、已知2x-y=1/3 ,xy=2,求2x4y3-x3y4 3、(-2)2012+(-2)2013
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
第三十八学时:14.3.2 用“平方差公式”分解因式
一、学习目标:1.使学生了解运用公式法分解因式的意义;
2.使学生掌握用平方差公式分解因式
二、重点难点
重 点: 掌握运用平方差公式分解因式.
难 点: 将单项式化为平方形式,再用平方差公式分解因式;
学习方法:归纳、概括、总结
三、合作学习
创设问题情境,引入新课
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.
1.请看乘法公式
(a+b)(a-b)=a2-b2 (1)
左边是整式乘法,右边是一个多项式,把这个等式反过来就是
a2-b2=(a+b)(a-b) (2)
左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.
a2-b2=(a+b)(a-b)
2.公式讲解
如x2-16
=(x)2-42
=(x+4)(x-4).
9 m 2-4n2
=(3 m )2-(2n)2
=(3 m +2n)(3 m -2n)
四、精讲精练
例1、把下列各式分解因式:
(1)25-16x2; (2)9a2- b2.
例2、把下列各式分解因式:
(1)9(m+n)2-(m-n)2; (2)2x3-8x.
补充例题:判断下列分解因式是否正确.
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)•(a2-1).
五、课堂练习 教科书练习
六、作业 1、教科书习题
2、分解因式:x4-16 x3-4x 4x2-(y-z)2
3、若x2-y2=30,x-y=-5求x+y
第三十九学时:14.3.2 用“完全平方公式”分解因式
一、学习目标:
1.使学生会用完全平方公式分解因式.
2.使学生学习多步骤,多方法的分解因式
二、重点难点:
重点: 让学生掌握多步骤、多方法分解因式方法
难点: 让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式
三、合作学习
创设问题情境,引入新课
完全平方公式(a±b)2=a2±2ab+b2
讲授新课
1.推导用完全平方公式分解因式的公式以及公式的特点.
将完全平方公式倒写:
a2+2ab+b2=(a+b)2;
a2-2ab+b2=(a-b)2.
凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解
用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.
由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.
练一练.下列各式是不是完全平方式?
(1)a2-4a+4; (2)x2+4x+4y2;
(3)4a2+2ab+ b2; (4)a2-ab+b2;
四、精讲精练
例1、把下列完全平方式分解因式:
(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.
例2、把下列各式分解因式:
(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.
课堂练习: 教科书练习
补充练习:把下列各式分解因式:
(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;
五、小结:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.
六、作业:1、
2、分解因式:
X2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2
45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4
第四十学时:15.1.1从分数到分式
一学习目标
【学习过程】
一、阅读教材
二、独立完成下列预习作业:
1、单项式和多项式统称 整式 .
2、 表示 ÷ 的商, 可以表示为 .
3、长方形的面积为10 ,长为7cm,宽应为 cm;长方形的面积为S,长为a,宽应为 .
4、把体积为20 的水倒入底面积为33 的圆柱形容器中,水面高度为 cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为 .
一般地,如果A、B表示两个整式,并且B中含有字母 ,那么式子 叫做分式.
◆◆分式和整式统称有理式◆◆
三、合作交流,解决问题:
分式的分母表示除数,由于除数不能为0,故分式的分母不能为0,即当B≠0时,分式 才有意义.分子分母相等时分式的值为1、分子分母互为相反数时分式的值为-1.
1、当x 时,分式 有意义;
2、当x 时,分式 有意义;
3、当b 时,分式 有意义;
4、当x、y满足 时,分式 有意义;
四、课堂测控:
1、下列各式 , , , , , , , , x+y, , , , ,0中,
是分式的有 ;
是整式的有 ;
是有理式的有
3、下列各式中,无论x取何值,分式都有意义的是( )
A. B. C. D.
4、当x 时,分式 的值为零
5、当x 时,分式 的值为1;当x 时,分式 的值为-1.
第四十一学时:§16.1.2分式的基本性质--约分 自主合作学习
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、分式的分子与分母同乘(或除以)一个不为0的整式,分式的值 不变 .
即 或 (C≠0)
2、填空:⑴ ;
⑵ ; (b≠0)
3、利用分式的基本性质:将分子和分母的公因式约去,这样的分式变形叫做分式的 约分 ;经过约分后的分式,其分子与分母没有公因式,像这样的分式叫做 最简分式 .
三、合作交流,解决问题:
将下列分式化为最简分式:
⑴ ⑵ ⑶
四、课堂测控:
1.分数的基本性质为:分式的分子分母同乘(或除以)一个不为0的整式,分式的值不变.
用字母表示为:
2.把下列分数化为最简分数:(1) = ;(2) = ;(3) = .
分式的基本性质为: .
3、填空:① ②
③ ④
4、分式 , , , 中是最简分式的有( )
A.1个 B.2个 C.3个 D.4个
第四十二学时:§16.1.2分式的基本性质--通分 自主合作学习
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、利用分式的基本性质:将分式的分子和分母同乘适当的整式,不改变分式的值,使几个分式化为分母相同的分式,这样的分式变形叫做分式的通分.
2、根据你的预习和理解找出:
① 与 的最简公分母是 ; ② 与 的最简公分母是 ;
③ 与 最简公分母是 ;④ 与 的最简公分母是 .
★★如何确定最简公分母?一般是取各分母的所有因式的次幂的积
三、合作交流,解决问题:
1、通分:⑴ 与 ⑵ ,
2、通分:⑴ 与 ; ★⑵ , .
四、课堂测控:
1、分式 和 的最简公分母是 . 分式 和 的最简公分母是 .
2、化简:
3、分式 , , , 中已为最简分式的有( )
A、1个 B、2个 C、3个 D、4个
4、化简分式 的结果为( )
A、 B、 C、 D、
5、若分式 的分子、分母中的x与y同时扩大2倍,则分式的值( )
A、扩大2倍 B、缩小2倍 C、不变 D、是原来的2倍
6、不改变分式的值,使分式 的各项系数化为整数,分子、分母应乘以( )
A、10 B、9 C、45 D、90
7、不改变分式 的值,使分子、分母次项的系数为整数,正确的是( )
A、 B、 C、 D、
8、通分:
⑴ 与 ⑵ 与
第四十三学时§16.2.1分式的乘除 自主合作学习
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、观察下列算式:
⑴ ⑵
请写出分数的乘除法法则:
乘法法则: 分子乘以分子作为积的分子、分母乘以分母作为积的分母 ;
除法法则: 除以一个数等于乘以这个数的倒数 .
2、分式的乘除法法则:(类似于分数乘除法法则)
乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的分母 ;
除法法则: 除以一个数等于乘以这个数的倒数 .
3、分式乘方: 即分式乘方,是把分子、分母分别乘方.
三、合作交流,解决问题:
1、计算:
⑴ ; ⑵
2、计算:
⑴ ; ⑵ .
4、计算:⑴ ⑵
四、课堂测控:
1、计算:
第四十四学时:§16.2.2分式的加减 自主合作学习
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、填空:
① 与 的 相同,称为 分数, + = ,法则是 ;
② 与 的 不同,称为 分数, + = ,运算方法为 ;
2、 与 的 相同,称为 分式; 与 的 不同,称为 分式.
3、分式的加减法法则同分数的加减法法则类似
①同分母分式相加减,分母 ,把分子 ;
②异分母分式相加减,先 ,变为同分母的分式,再 .
4. , 的最简公分母是 .
5、在括号内填入适当的代数式:
三、合作交流,解决问题:
1、计算:⑴ + ⑵ - ⑶ +
2、计算:⑴ ⑵ +
⑶ ⑷ + +
3、计算:
四、课堂测控:
3、计算:⑴ ⑵
第四十五学时:§16.2.3整数指数幂 自主合作学习
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、回顾正整数幂的运算性质:
⑴同底数幂相乘: . ⑵幂的乘方: .
⑶同底数幂相除: . ⑷积的乘方: .
⑸ . ⑹ 当a 时, .
2、根据你的预习和理解填空:
3、一般地,当n是正整数时,
4、归纳:1题中的各性质,对于m,n可以是任意整数,均成立.
三、合作交流,解决问题:
1、计算:⑴ ⑵
2、计算:⑴ ⑵
四、课堂测控:
1、填空:
⑴ ; . ⑵ ; .
⑶ ; .⑷ ; (b≠0).
2、纳米是非常小的长度单位,1纳米= 米,把1纳米的物体放到乒乓球上,如同将乒乓球放到地球上,1立方毫米的空间可以放 个1立方纳米的物体,(物体间的间隙忽略不计).
3、用科学计数法表示下列各数:
①0.000000001= ;②0.0012= ;
③0.000000345= ;④-0.0003= ;
⑤0.0000000108= ;⑥5640000000= ;
4、计算:
⑴ ⑵ ⑶
5、计算:
⑴ ⑵
第四十六学时§16.3-1分式方程 自主合作学习
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、问题:一艘轮船在静水中的航速为20千米/时,它沿江以航速顺流航行100千米所用时间,与以航速逆流航行60千米所用时间相等,江水的流速为多少?
分析:设江水的流速为 千米/时,则轮船顺流航行速度为 千米/时,逆流航行速度为 千米/时;顺流航行100千米所用时间为 小时,逆流航行600千米所用时间为 小时.
根据两次航行所用时间相等可得到方程:
方程①的分母含有未知数 ,像这样分母中含有未知数的方程叫做分式方程.
我们以前学习的方程都是整式方程,分母中不含未知数.
★★2、解分式方程的基本思路是把分式方程转化为正式方程.
其具体做法是:去分母、解整式方程、检验.
三、合作交流,解决问题:
1、试解分式方程:
⑴ ⑵
解:方程两边同乘 得: 解:方程两边同乘 得:
去括号得:
移项并合并得:
解得:
经检验: 是原方程的解. 经检验: 不是原方程的解,即原方程无解
分式方程为什么必须检验?如何检验?
.
2、解分式方程
⑴ ⑵
四、课堂测控:
1、下列哪些是分式方程?
⑴ ; ⑵ ; ⑶ ;
⑷ ; ⑸ ; ⑹ .
2、解下列分式方程:
⑴
第四十七学时:§16.3-2分式方程 自主合作学习
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
问题:两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?
分析:甲队1个月完成总工程的 ,若设乙队单独施工1个月能完成总工程的 .
则甲队半个月完成总工程的 ;乙队半个月完成总工程的 ;两队半个月完成总工程的 ;
解:设乙队单独施工1个月能完成总工程的 ,则有方程:
方程两边同乘 得:
解得:x=
经检验:x= 符合题设条件.
∴ 队施工速度快.
三、合作交流,解决问题:
问题:一项工程要在限定期内完成,如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成;如果两组合做3天后,剩下的工程由第二组单独做,正好在规定日期内完成。问规定日期是多少天?
四、课堂测控:(小试身手)
某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元.工程领导小组根据甲、乙两队的投标书测算:
⑴甲队单独完成这项工程刚好如期完成;
⑵乙队单独完成这项工程要比规定日期多用5天;
⑶若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成
在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?
列分式方程解应用题的一般步骤:
审:分析题意,找出等量关系;
设:选择恰当的未知数,注意单位;
列:根据等量关系正确列出方程;
解:认真仔细;
验:检验方程和题意;
答:完整作答.
正在阅读:
我爱我的老师作文800字01-20
2022年上海考研科目及分值公布08-21
2019年陕西一级造价工程师复审名单|2019年陕西一级造价工程师报考条件04-02
2017年福建省南平事业单位面试真题及答案(Word版)11-03
2019下半年广西教师资格考试幼儿保教知识与能力真题及答案(Word版)08-03
吉林2022年9月ACCA报名时间及入口(5月10日开始)05-21
2019下半年湖南英语六级报名时间及报名入口公布【笔试+口试】03-09
球场上的背影作文600字08-14
镇江2021到2030年的规划-江苏镇江2021年1月自考成绩查询时间:2月1日14:00公布09-24
简短的两岁儿童励志故事3篇10-22