时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。例如:第3s末、3s时、第4s初……均为时刻;3s内、第3s、第2s至第3s内……均为时间间隔。区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。
二、路程与位移的关系
位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小等于路程。一般情况下,路程≥位移的大小。
三、运动图像的含义和应用
由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x-t图象和v—t图象。
1.理解图象的含义:
(1)x-t图象是描述位移随时间的变化规律。
(2)v—t图象是描述速度随时间的变化规律。
2.了解图象斜率的含义:
(1)x-t图象中,图线的斜率表示速度。
(2)v—t图象中,图线的斜率表示加速度。
(1)定义:在电源内部,非静电力所做的功W与被移送的电荷q的比值叫电源的电动势。
(2)定义式:E=W/q
(3)单位:伏(V)
(4)物理意义:表示电源把其它形式的能(非静电力做功)转化为电能的本领大小。电动势越大,电路中每通过1C电量时,电源将其它形式的能转化成电能的数值就越多。
二、电源(池)的几个重要参数
(1)电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的大小无关。
(2)内阻(r):电源内部的电阻。
(3)容量:电池放电时能输出的总电荷量。其单位是:A·h,mA·h.
2.在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。
3.滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN
4.μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<μ<1。
5.滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。
6.条件:直接接触、相互挤压(弹力),相对运动/趋势。
7.摩擦力的大小与接触面积无关,与相对运动速度无关。
8.摩擦力可以是阻力,也可以是动力。
9.计算:公式法/二力平衡法。
10.停车距离=反应距离(车速×反应时间)+刹车距离(匀减速)
11.安全距离≥停车距离
12.刹车距离的大小取决于车的初速度和路面的粗糙程度
13.追及/相遇问题:抓住两物体速度相等时满足的临界条件,时间及位移关系,临界状态(匀减速至静止)。可用图象法解题。
(1)弹簧两端的弹力方向,与弹簧中心轴线重合,指向弹簧恢复原状的方向。其弹力可为拉力,可为压力;对弹簧秤只为拉力。
(2)轻绳对物体的弹力方向,沿绳指向绳收缩的方向,即只为拉力。
(3)点与面接触时弹力的方向,过接触点垂直于接触面(或接触面的切线方向)而指向受力物体。
(4)面与面接触时弹力的方向,垂直于接触面而指向受力物体。
(5)球与面接触时弹力的方向,在接触点与球心的连线上而指向受力物体。
(6)球与球相接触的弹力方向,沿半径方向,垂直于过接触点的公切面而指向受力物体。
(7)轻杆的弹力方向可能沿杆也可能不沿杆,杆可提供拉力也可提供压力。(8)根据物体的运动情况,动力学规律判断.
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F{负号表示方向相反,F、F各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
时间与时刻
1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。
△t=t2—t1
2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h。
3.通常以问题中的初始时刻为零点。
路程和位移
1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。
2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。
3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。
4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。