高一数学幂函数知识点总结_高一数学知识点:幂函数

时间:2024-04-27 08:33:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

  【#高一# 导语】掌握幂函数的内部规律及本质是学好幂函数的关键所在,下面是®文档大全网为大家整理的幂函数公式大全,希望对广大朋友有所帮助。





  定义:


  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。


  定义域和值域:


  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域


  性质:


  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:


  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:


  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;


  排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;


  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。


  总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:


  如果a为任意实数,则函数的定义域为大于0的所有实数;


  如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。


  在x大于0时,函数的值域总是大于0的实数。


  在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。


  而只有a为正数,0才进入函数的值域。


  由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.


  可以看到:


  (1)所有的图形都通过(1,1)这点。


  (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。


  (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。


  (4)当a小于0时,a越小,图形倾斜程度越大。


  (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。


  (6)显然幂函数*。


高一数学知识点:幂函数.doc

本文来源:https://www.wddqw.com/ZkVX.html