比的应用说课稿
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
《比的应用》说课稿 我说课的内容是:人教版教材六年级上册《比的应用》一课。 一、教材分析 这节课是在学生理解了分数与比的联系,掌握简单的分数乘、除法应用题数量关系的基础上学习的,是把比的知识应用于解决实际问题的一个课例,它是“平均分”问题的发展。掌握了按比例分配的解题方法,不仅能有效地解决生活、工作的问题,也为以后学习“比例”“比例尺”奠定了基础。 二、教学目标 本节课的教学目标体现新课程三维目标理念分为:(出示) 知识目标:理解按比例分配的意义,掌握按比例分配应用题的结构特征以及解题方法,能正确解答按比例分配应用题。 能力目标:培养学生探究知识的能力和良好的思维品质,以及解决简单实际问题的能力,培养学生合作学习及归纳、总结、概括的能力。 情感目标:创设民主和谐的学习氛围,在关注培养学生自主探索意识、灵活思维品质过程中形成积极的学习情感。 三、教学重难点(出示): 重点:运用比的意义解决按比分配的实际问题。 难点:通过实际操作理解按比例分配的实际意义。 四、教学方法(出示) 教学中我主要以“引导—探索”作为主要教学方式。在每一个教学环节中我只是适当的点拨引领,尽量把时间和空间交给学生,让每一个学生都能够积极主动地参与到学习活动中,使学生在发现问题、独立思考、自主探索、合作交流中解决问题,提高能力,经历数学知识的产生与发展,促使数学思想方法的发展,体验主动参与合作探究,获得新知识的愉悦。 五、教学过程(出示) 环节一:情景引入,揭示意义 第一个环节是让个学生理解按比例分配的意义,在揭示按比例分配的意义前先复习一道练习题,(出示)这样安排,目的是帮助学生把握新旧知识和连接点,为分散难点起着积极的迁移作用。 接下来出示一块巧克力(出示),让同学们说如果巧克力只分给两个人他们分别是怎样分配的,怎样用比表示出来?学生回答1:1或1:2老师再问大家,根据比例,除了这种方案还可以怎样分?同学们可以根据自己的喜好说出不同的分配方案。这一部分使学生体会“平均分”和“按比例分”只是两种分配方式,“平均分”只是“按比例分”的特例,而“按比例分”是“平均分”的发展。进而引入按比例分配的概念:在工农业生产和生活中,常常需要把一个数量按照一定的比来进行分配。这种分配方法通常叫按比例分配。 板书课题 比的应用 按比例分配 为进一步加深学生对按比例分配意义的理解,我设计一个小调查活动,(出示)先出示生活中常见的奶茶和营养早餐中存在的比例关系,激起学生探究兴趣,引导学生发现生活中按比例分配的事物,再让学生以小组为单位,找一找,说一说,生活中还有哪些事物存在着比例关系?通过学生的自主探究体验数学源于生活的乐趣。 环节二:自主探究,解决问题 下面出示一种清洁剂的浓缩液(出示)老师告诉大家这种浓缩液不能直接用,要兑水用才行,怎样兑呢,有学生说我看见妈妈把浓缩液和水是一半一半来兑的,还有学生说我看见妈妈用很少的浓缩液兑了很多的水等等,这里学生说出了不同的兑比方案。老师再告诉大家科学的兑比方案是把浓缩液和水的体积按1:4的比混合效果最好。再问学生1:4是什么意思?1和4分别代表什么?这样设计更贴近学生生活,使他们自然地进入按比例分配的事例中。 接下来,出示一个稀释瓶子(出示)。老师告诉大家这瓶就是按1:4兑完的500ml的稀释液,请大家讨论其中浓缩液和水的体积分别是多少?你会用画线段图的方法来表示它们的关系吗?同学们先讨论,再汇报出示线段图。我们将500毫升的浓缩液用一条线段来表示。根据1:4的比,将它平均分成五份,其中浓缩液占了一份,水占了其中四份。作为六年级的学生他们能通过口算算出正确答案,这时老师的任务就是帮助他们梳理规范的书写格式。 第一种方法:归一法来解答,先算出总份数,再根据分数乘法的意义,分别求出浓缩液和水的体积。(出示) (1)总份数:1+4=5 (2)每份的体积:500÷5=100(ml) (3)浓缩液的体积:100×1=100(ml) (4)水的体积:100×4=400(ml) 答:浓缩液的体积是100ml,水的体积是400ml。 第二种方法:用分数解答,先算出总份数,再算出每份的体积,最后分别算出浓缩液和水的体积。 (1)总份数:1+4=5 (2)浓缩液的体积:500× =100(ml) (3)水的体积:500× =400(ml) 答:浓缩液的体积是100ml,水的体积是400ml。 这是本节课最重要的一个环节,以教材中的例题为依据,为学生提供自主探索的空间,教师只是适当进行点拨,让学生从份数转化成分数,然后用分数乘法的意义解决问题,加强学生对部分量和总量之间关系的掌握。从而培养学生自主探究能力和多策略解决问题的思维品质。 最后引导学生总结检验方法。可以通过体积之比或求体积之和的方法验证结论。这是为了培养学生认真负责的学习态度。 环节三:对比归纳,形成体系 (出示)下面对结构特征及解题方法进行归纳 结构特征:已知总量和各部分量的比,求各部分量。 方法一步骤: 1、根据比先求出总份数。 2、求出各部分量占总量的几分之几。 3、运用分数乘法列式计算,求出各部分量。 4、答题并检验。 方法二步骤: 1、根据比先求出总份数。 2、“量”、“份”对应,求“一份数”。 3、一份数×份数=部分量。 4、答题并检验。 这部分是引导学生观察发现,归纳概括“按比例分配”问题的结构特点和解题策略,从而形成数学模型。 本文来源:https://www.wddqw.com/doc/3d98a369a717866fb84ae45c3b3567ec102ddc83.html