精心整理 function [DeD,aver_DeD]=Degree_Distribution(A) %% 求网络图中各节点的度及度的分布曲线 %% 求解算法:求解每个节点的度,再按发生频率即为概率,求P(k) %A————————网络图的邻接矩阵 %DeD————————网络图各节点的度分布 %aver_DeD———————网络图的平均度 N=size(A,2); DeD=zeros(1,N); for i=1:N % DeD(i)=length(find((A(i,:)==1))); DeD(i)=sum(A(i,:)); end aver_DeD=mean(DeD); if sum(DeD)==0 disp('该网络图只是由一些孤立点组成'); return; else figure; bar([1:N],DeD); xlabel('节点编号n'); ylabel('各节点的度数K'); title('网络图中各节点的度的大小分布图'); end figure; M=max(DeD); for i=1:M+1; %网络图中节点的度数最大为M,但要同时考虑到度为0的节点的存在性 N_DeD(i)=length(find(DeD==i-1)); % DeD=[2 2 2 2 2 2] end P_DeD=zeros(1,M+1); P_DeD(:)=N_DeD(:)./sum(N_DeD); bar([0:M],P_DeD,'r'); xlabel('节点的度 K'); ylabel('节点度为K的概率 P(K)'); title('网络图中节点度的概率分布图'); 精心整理 function [C,aver_C]=Clustering_Coefficient(A) %% 求网络图中各节点的聚类系数及整个网络的聚类系数 %% 求解算法:求解每个节点的聚类系数,找某节点的全部邻居,这些邻居节点构成一个子图 %% 从A中抽出该子图的邻接矩阵,计算子图的边数,再依据聚类系数的定义,即可算出该节点的聚类系数 %A————————网络图的邻接矩阵 %C————————网络图各节点的聚类系数 %aver———————整个网络图的聚类系数 N=size(A,2); C=zeros(1,N); for i=1:N aa=find(A(i,:)==1); %找寻子图的邻居节点 if isempty(aa) disp(['节点',int2str(i),'为孤立节点,其聚类系数赋值为0']); C(i)=0; else m=length(aa); if m==1 disp(['节点',int2str(i),'只有一个邻居节点,其聚类系数赋值为0']); C(i)=0; else B=A(aa,aa) % 抽取子图的邻接矩阵 C(i)=length(find(B==1))/(m*(m-1)); end end end aver_C=mean(C) 本文来源:https://www.wddqw.com/doc/b41674d94593daef5ef7ba0d4a7302768e996fb7.html