数学天地的少数内容,四年级 祖冲之与圆周率的故事 祖冲之(429年-500年),字文远,范阳郡遒县(今河北省涞水县)人,南北朝时期杰出的数学家、天文学家。 出身范阳祖氏。一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。 秦汉以前,人们以“径一周三”做为圆周率,这就是“古率”。后来发现古率误差太大,圆周率应是“圆径一而周三有余”,不过究竞余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得x=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出x在3.1415926与3.1415927之间。并得出了x分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近x值的分数。祖冲之究竞用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术”方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把=叫做“祖率”。 本文来源:https://www.wddqw.com/doc/c9eb034dae02de80d4d8d15abe23482fb4da02ee.html