[小学奥数走走停停问题]奥数走走停停行程问题练习及答案【三篇】

副标题:奥数走走停停行程问题练习及答案【三篇】

时间:2024-04-25 05:45:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#小学奥数# 导语】成功根本没有秘诀可言,如果有的话,就有两个:第一个就是坚持到底,永不言弃;第二个就是当你想放弃的时候,回过头来看看第一个秘诀,坚持到底,永不言弃,学习也是一样需要多做练习。以下是©文档大全网为大家整理的《奥数走走停停行程问题练习及答案【三篇】》 供您查阅。




【第一篇】

【题目】甲乙两人同时从一条800环形跑道同向行驶,甲100米/分,乙80米/分,两人每跑200米休息1分钟,甲需多久第一次追上乙?
  【解答】这样的题有三种情况:在乙休息结束时被追上、在休息过程中被追上和在行进中被追上。很显然首先考虑在休息结束时的时间最少,如果不行再考虑在休息过程中被追上,最后考虑行进中被追上。其中在休息结束时或者休息过程中被追上的情况必须考虑是否是在休息点追上的。
  由此首先考虑休息800÷200-1=3分钟的情况。甲就要比乙多休息3分钟,就相当于甲要追乙800+80×3=1040米,需要1040÷(100-80)=52分钟,52分钟甲行了52×100=5200米,刚好是在休息点追上的满足条件。行5200米要休息5200÷200-1=25分钟。
  因此甲需要52+25=77分钟第一次追上乙。

【第二篇】

【题目】在400米环形跑道上,A、B两点的跑道相距200米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?
  【解答】这是传说中的“走走停停”的行程问题。
  这里分三种情况讨论休息的时间,第一、如果在行进中追上,甲比乙多休息10秒,第二,如果在乙休息结束的时候追上,甲比乙多休息5秒,第三,如果在休息过程中且又没有休息结束,那么甲比乙多休息的时间,就在这5~10秒之间。显然我们考虑的顺序是首先看是否在结束时追上,又是否在休息中追上,最后考虑在行进中追上。
  有了以上的分析,我们就可以来解答这个题了。我们假设在同一个地点,甲比乙晚出发的时间在200/7+5=235/7和200/7+10=270/7的之间,在以后的行程中,甲就要比乙少用这么多时间,由于甲行100米比乙少用100/5-100/7=40/7秒。
  继续讨论,因为270/7÷40/7不是整数,说明第一次追上不是在乙休息结束的时候追上的。因为在这个范围内有240/7÷40/7=6是整数,说明在乙休息的中追上的。即甲共行了6×100+200=800米,休息了7次,计算出时间就是800/7+7×5=149又2/7秒。
  注:这种方法不适于休息点不同的题,具有片面性。

【第三篇】

小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?
  解:先计算,从学校开出,到面包车到达城门用了多少时间.

  此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此

  所用时间=9÷6=1.5(小时).

  小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是

  面包车速度是 54-6=48(千米/小时).

  城门离学校的距离是

  48×1.5=72(千米).

  答:学校到城门的距离是72千米.

奥数走走停停行程问题练习及答案【三篇】.doc

本文来源:https://www.wddqw.com/fmzX.html