电势差是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。
电场中两点的电势之差叫电势差,依教材要求,电势差都取绝对值,知道了电势差的绝对值,要比较哪个点的电势高,需根据电场力对电荷做功的正负判断,或者是由这两点在电场线上的位置判断。
电流之所以能够在导线中流动,也是因为在电流中有着高电势和低电势之间的差别。这种差别叫电势差,也叫电压。换句话说。在电路中,任意两点之间的电位差称为这两点的电压。通常用字母V代表电压。
电源是给用电器两端提供电压的装置。
电压的大小可以用电压表(符号:V)测量。
串联电路电压规律:
串联电路两端总电压等于各部分电路两端电压和。
公式:ΣU=U1+U2
并联电路电压规律:
并联电路各支路两端电压相等,且等于电源电压。
公式:ΣU=U1=U2
欧姆定律:U=IR(I为电流,R是电阻)但是这个公式只适用于纯电阻电路。
串联电压之关系,总压等于分压和,U=U1+U2.
并联电压之特点,支压都等电源压,U=U1=U2
①熔化热
1、熔化:物质从固态变成液态的过程叫熔化(而从液态变成固态的过程叫凝固)。
注意:晶体在熔化和凝固的过程中温度不变,同一种晶体的熔点和凝固点相同;而非晶体在熔化过程中温度不断升高,凝固的过程中温度不断降低。
2、熔化热:某种晶体熔化过程中所需的能量(Q)与其质量(m)之比叫做这种晶体的熔化热。
I、用λ表示晶体的熔化热,则λ=Q/m,在国际单位中熔化热的单位是焦尔/千克(J/Kg)。
II、晶体在熔化过程中吸收热量增大分子势能,破坏晶体结构,变为液态。所以熔化热与晶体的质量无关,只取决于晶体的种类。
III、一定质量的晶体,熔化时吸收的热量与凝固时放出的热量相等。
注意:非晶体在熔化的过程中温度会不断变化,而不同温度下非晶体由固态变为液态时吸收的热量是不同的,所以非晶体没有确定的熔化热。
②汽化热
1、汽化:物质从液态变成气态的过程叫汽化(而从气态变成液态的过程叫液化)。
2、汽化热:某种液体汽化成同温度的气体时所需要的能量(Q)与其质量(m)之比叫这种物质在这一温度下的汽化热。用L表示汽化热,则L=Q/m,在国际单位制中汽化热的单位是焦尔/千克(J/Kg)。
I、液体汽化时,液体分子离开液体表面成为气体分子,要克服其它分子的吸引而做功,因此要吸收能量。
II、一定质量的物质,在一定的温度和压强下,汽化时吸收的热量与液化时放出的热量相等。
III、液体的汽化热与液体的物质种类、液体的温度、外界压强均有关。
1、只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;
2、力是该变物体速度的原因;
3、力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)
4、力是产生加速度的原因;
二、惯性:物体保持匀速直线运动或静止状态的性质叫惯性。
1、一切物体都有惯性;
2、惯性的大小由物体的质量决定;
3、惯性是描述物体运动状态改变难易的物理量;
三、牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。
1、数学表达式:a=F合/m;
2、加速度随力的产生而产生、变化而变化、消失而消失;
3、当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。
4、力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;
四、牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;
1、作用力和反作用力同时产生、同时变化、同时消失;
2、作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上。
1、电流产生的条件:
(1)导体内有大量自由电荷(金属导体——自由电子;电解质溶液——正负离子;导电气体——正负离子和电子)
(2)导体两端存在电势差(电压)
(3)导体中存在持续电流的条件:是保持导体两端的电势差。
2、电流的方向
电流可以由正电荷的定向移动形成,也可以是负电荷的定向移动形成,也可以是由正负电荷同时定向移动形成。习惯上规定:正电荷定向移动的方向为电流的方向。
说明:
(1)负电荷沿某一方向运动和等量的正电荷沿相反方向运动产生的效果相同。金属导体中电流的方向与自由电子定向移动方向相反。
(2)电流有方向但电流强度不是矢量。
(3)方向不随时间而改变的电流叫直流;方向和强度都不随时间改变的电流叫做恒定电流。通常所说的直流常常指的是恒定电流。
1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有:
静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。
2、利用高压静电产生的电场,应用有:
静电保鲜、静电灭菌、作物种子处理等。
3、利用静电放电产生的臭氧、无菌消毒等
雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的氮合成为氨,供给植物营养。