人教版四年级奥数题,新人教版初中奥数手抄报资料

副标题:新人教版初中奥数手抄报资料

时间:2024-02-27 11:56:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

#初中奥数# 导语:手抄报是一种可传阅、可观赏、也可张贴的报纸的另一种形式。在学校,手抄报是第二课堂的一种很好的活动形式,具有相当强的可塑性和自由性。下面是®文档大全网为您整理的新人教版初中奥数手抄报资料,欢迎大家阅读鉴赏。

  希腊时代的数学家已经知道如何用尺规作出正2m×3n×5p边形,其中m是正整数,而n和p只能是0或1.但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:一个正n边形可以尺规作图若且唯若n是以下两种形式之一:1、n=2k,k=2,3,…2、n=2k×(几个不同「费马质数」的乘积),k=0,1,2,…费马质数是形如fk=22k的质数。像f0=3,f1=5,f2=17,f3=257,f4=65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:任一多项式都有(复数)根。这结果称为「代数学基本定理」(fundamentaltheoremofalgebra).事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

新人教版初中奥数手抄报资料.doc

本文来源:https://www.wddqw.com/nYOI.html