【题目1】红光农场原定9时来车接601班同学去劳动,为了争取时间,8时同学们就从学校步行向农场出发,在途中遇到准时来接他们的汽车,于是乘车去农场,这样比原定时间早到12分钟.汽车每小时行48千米,同学们步行的速度是每小时几千米?
【解答】学生步行的路程,汽车需要12÷2=6分钟,说明是在9:00前6分钟接到学生,即8:54分,说明学生行了54分钟。所以汽车的速度是步行的54÷6=9倍,因此步行的速度是每小时行48÷9=16/3千米。
【题目2】甲、乙两地公路长74千米,8:15一辆汽车从甲地到乙地,半个小时后,又有一辆同样速度的汽车从甲地开往乙地.王叔叔8:25从乙地骑摩托车出发去甲地,在差5分不到9点时,他遇到了第一辆汽车,9:16遇到第二辆汽车,王叔叔骑摩托车的速度是多少?
【解答】汽车40分和摩托车30分共行74千米,汽车31分和摩托车51分共行74千米。可以知道汽车40-31=9分钟相当于摩托车51-30=21分钟行的。可以得到摩托车行完需要40÷9×21+30=370/3分钟。所以摩托车小时行74÷370/3×60=36千米
【题目3】在一个边长17米的正方形ABCD的A点,有红、蓝两个甲虫.9:00同时沿着边以相同的速度爬行.红甲虫沿A,B,C,D;蓝甲虫沿A,D,C.9:30红甲虫爬到AB间距离A点10米的E点后继续向前爬去,10:15到BC间的F点,再经C向前爬去.蓝甲虫爬到AD间距离D点5米的G点休息了一会儿再往前爬去.当两个甲虫在CD上的H点相遇时,凑巧四边形EFHG的面积是正方形面积的一半.求蓝甲虫在G点休息了多长的时间?
【解答】要满足面积是一半,那么HE垂直正方形的边AB。则有红甲虫比蓝甲虫多行(17-10)×2=14米。每米需要30÷10=3分钟,所以蓝甲虫休息了14×3=42分钟。
【题目4】甲、乙两人从周长为1600米的正方形水池ABCD相对的两个顶点A,C同时出发绕水池的边沿A,B,C,D,A的?向行走.甲的速度是每分钟50米,乙的速度是每分钟46米则甲、乙第一次在同一边上行走,是发生在出发后的第多少分钟?第一次在同一边上行走了多少分钟?
【解答】要使两人在同一边行走,甲乙相距必须小于一条边,并且甲要迈过顶点。甲追乙1600÷4=400米,至少需要400÷(50-46)=100分钟,此时甲行了50×100=5000米,5000÷400=12条边……200米。因此还要行200÷50=4分钟,即出发后100+4=104分钟两人第一次在同一边上行走。此时甲乙相距400×2-104×(50-46)=384米,乙行完这条边还有16米,因此第一次在同一边上走了16÷46=8/23分钟。
【题目5】甲乙两车同时从AB两地出发往返于两地之间,经48分钟相遇,相遇后又经12分钟甲被从A地返回的乙追上,甲到达B地时被乙追上几次?
【解答】画个图就更清楚。乙行12分钟的路程甲需要行48×2+12=108分钟。乙的速度就是甲的108÷12=9倍,甲行一个单程,乙就要行9个单程,乙每次返回都要追上甲一次,所以共要追上4次。