【#高二# 导语】高二变化的大背景,便是文理分科(或七选三)。在对各个学科都有了初步了解后,学生们需要对自己未来的发展科目有所选择、有所侧重。这可谓是学生们第一次完全自己把握、风险未知的主动选择。®文档大全网高二频道为你整理了《高二数学必修五知识点复习》,助你金榜题名!
函数的解析表达式
(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1)凑配法
2)待定系数法
3)换元法
4)消参法
等比数列性质
(1)若m、n、p、q∈Nx,且m+n=p+q,则am·an=ap·aq;
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}
(4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
(5)等比数列前n项之和Sn=a1(1—q’n)/(1—q)
(6)任意两项am,an的关系为an=am·q’(n—m)
(7)在等比数列中,首项a1与公比q都不为零。
注意:上述公式中a’n表示a的n次方。
函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:
(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。
(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。
(3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。
(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。
(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。
(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。
(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。
映射、函数、反函数
1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。
2、对于函数的概念,应注意如下几点:
(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。
(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。
3、求函数y=f(x)的反函数的一般步骤:
(1)确定原函数的值域,也就是反函数的定义域;
(2)由y=f(x)的解析式求出x=f—1(y);
(3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。
注意:
①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。
②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。
集合的分类:
(1)按元素属性分类,如点集,数集。
(2)按元素的个数多少,分为有/无限集
关于集合的概念:
(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。
集合可以根据它含有的元素的个数分为两类:
含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N;
在自然数集内排除0的集合叫做正整数集,记作N+或N_;
整数全体构成的集合,叫做整数集,记作Z;
有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)
实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的'点一一对应的数。)
1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。
例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.
2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。
例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”
而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。
一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。
例如:集合A={x∈R│x2-1=0}的特征是X2-1=0
正在阅读:
高二数学必修五知识点复习06-09
2022下半年天津英语六级口语考试准考证打印入口【已开通】11-15
爱上读书作文700字07-27
云南普洱2017年经济师成绩查询时间:2018年1月初03-15
2017幼儿文明礼仪儿歌《学习歌》10-27
春日漫想作文800字12-14
上海教师资格证成绩:2017上半年上海教师证成绩查询时间(4月18日起)11-20
2021年黑龙江中级经济师成绩查询时间:11月29日09-12