【#小学奥数# 导语】手抄报是一种可以传阅、观赏性很强、也可张贴的报纸的另一种表现的形式。在学校里,尤其是小学,是校本课程的一种很好的活动形式。学生们一般用水彩笔和蜡笔制作手抄报。以下是®文档大全网整理的《小学四年级数学手抄报素材》相关资料,希望帮助到您。
2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。
3、商一位数:
(1)两位数除以整十数,如:62÷30;
(2)三位数除以整十数,如:364÷70
(3)两位数除以两位数,如:90÷29(把29看做30来试商)
(4)三位数除以两位数,如:324÷81(把81看做80来试商)
(5)三位数除以两位数,如:104÷26(把26看做25来试商)
(6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)
(7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)
4、商两位数:(三位数除以两位数)
(1)前两位有余数,如:576÷18
(2)前两位没有余数,如:930÷31
5、判断商的位数的方法:
被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。
第一阶段:数学萌芽时期
这个时期从远古时代起,止于公元前5世纪。这个时期,人类在长期的生产实践中积累了许多数学知识,逐渐形成了数的概念,产生了数的运算方法。由于田亩度量和天文观测的需要,引起了几何学的初步发展。这个时期是算术、几何形成的时期,但它们还没有分开,彼此紧密地交织在一起。也没有形成严格、完整的体系,更重要的是缺乏逻辑性,基本上看不到命题的证明、演绎推理和公理化系统。
第二阶段:常量数学时期
即“初等数学”时期。这个时期开始于公元前6、7世纪,止于17世纪中叶,延续了2000多年。在这个时期,数学已由具体的`阶段过渡到抽象的阶段,并逐渐形成一门独立的、演绎的科学。在这个时期里,算术、初等几何、初等代数、三角学等都已成为独立的分支。这个时期的基本成果,已构成现在中学数学课本的主要内容。
第三阶段:变量数学时期
即“高等数学”时期。这个时期以17世纪中叶笛卡儿的解析几何的诞生为起点,止于19世纪中叶。这个时期和前一时期的区别在于,前一时期是用静止的方法研究客观世界的个别要素,而这一时期是运用运动和变化的观点来探究事物变化和发展的规律。
在这个时期,变量与函数的概念进入了数学,随后产生了微积分。这个时期虽然也出现了概率论和射影几何等新的数学分支,但似乎都被微积分过分强烈的光辉掩盖了它们的光彩。这个时期的基本成果是解析几何、微积分、微分方程等,它们是现今高等院校中的基础课程。
第四阶段:现代数学阶段
这个时期始于19世纪中叶。这个时期是以代数、几何、数学分析中的深刻变化为特征。几何、代数、数学分析变得更为抽象。可以说在现代的数学中,“数”、“形”的概念已发展到很高的境地。比如,非数之“数”的众多代数结构,像群、环、域等;无形之“形”的一些抽象空间,像线性空间、拓扑空间、流形等。
一、最小的数字。
古老而庞大的自然数家族,是由全体自然数1、2、3、4、5、6、7、8、9、10……集合在一起组成的。其中最小的是“1”,找不到的。如果你有兴趣的话,可以找一找。
二、没有的自然数。
也许你认为可以找到一个的自然数(n),但是,你立刻就会发现另一个自然数(n+1),它大于n。这就说明在自然数家族中永远找不到的自然数。
三、“1”确实是自然数家族中最小的。
自然数是无限的,而“1”是自然数中最小的。有人提出异议,不同意“1”是最小的自然数,说“0”比“1”小,“0”应该是最小的自然数。这是不对的,因为自然数指的是正整数,“0”是的非正非负的整数,因而“0”不属于自然数家族。“1”确实是自然数家族中最小的。
可别小看了这个最小的“1”,它是自然数的单位,是自然数中的第一代,人类最先认识的是“1”,有了“1”,才能得到1、2、3、4……
给你讲了万数之首“1”的特殊地位,所以,你千万别小看了它哦。
说爸爸的汽车里程表上原来是35千米,到了星期一变成了162千米;星期二变成了410千米;星期三变成了745千米;星期四还是745千米;星期五变成了928千米。老师问我们星期二爸爸开了多少千米。我们说:“太简单了,不是410千米,还是多少千米呢?”老师却说了一声:“错!”我们又说:“老师,你看花眼了吧,星期二这儿不是标着410千米吗?”老师说:“你们看,我为什么说错呢?就是因为410千米根本不是星期二开的里程,它是里程表上的数字,而里程表是不清零的,所以410千米是包括星期二、星期一以及以前开的路程的和。大家以后在做题的时候一定要看清题目,否则相差一个字,题目的意思就完全不一样了。”听了老师的解释,我们一下子明白了过来。接着,老师又提了一个问题,也就是星期一到星期五一共开了几千米?一个同学回答说:“先将162-35、410-162、745-410、745-745、928-745,再将他们的差加起来就好了。”老师说:“嗯,这是一种办法,但谁还有没有更好的方法呢?”我思考了一下,就举起手说:“只要将928-35就好了。”老师连连夸我。
学数学真有趣啊!