五年级下册数学复习资料:初二年级下册数学复习资料浙教版

副标题:初二年级下册数学复习资料浙教版

时间:2023-10-14 09:27:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

一、直角三角形
1、角平分线: 角平分线上的点到这个角的两边的距离相等
如图,∵AD是∠BAC的平分线(或∠1=∠2),
PE⊥AC,PF⊥AB
∴PE=PF
2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点
的距离相等 。 如图,∵CD是线段AB的垂直平分线,
∴PA=PB
3、勾股定理及其逆定理
①勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即 。
求斜边,则 ;求直角边,则 或 。
②逆定理 如果三角形的三边长a、b、c有关系 ,那么这个三角形是直角三角形 。
分别计算“ ”和“ ”,相等就是 ,不相等就不是 。
4、直角三角形全等
方法:SAS、ASA、SSS、AAS、HL。
5、其它性质
①直角三角形斜边上的中线等于斜边上的一半
如图,在 ABC中,∵CD是斜边AB的中线,∴CD= 。
②在直角三角形中,如果一个锐角等于30°那么它所对的直角
边等于斜边的一半
如图,在 ABC中,∵∠A=30°,∴BC= 。
③在直角三角形中,如果一条直角边等于斜边的一半,那么
这条直角边所对的角等于30°
如图,在 ABC中,∵BC= ,∴∠A=30°。
④三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
如图,在⊿ABC中,∵E是AB的中点,F是AC的中点,
∴EF是⊿ABC的中位线 ∴EF‖BC,
二、四边形
1、多边形内角和公式:n边形的内角和=(n-2)•180º
求n边形的方法:
2、中心对称:(在直角坐标系中即关于原点对称,其横、纵坐标都互为相反数)
成中心对称的两个图形中,对应点得连线经过对称中心,且被对称中心平分
会画与某某图形成中心对称图形
会辨别图形、实物、汉字、英文字母、扑克等是否中心对称图形
3、特殊四边形的判定
①平行四边形:
方法1两组对边分别平行的四边形是平行四边形
如图,∵ AB‖CD,AD‖BC,∴四边形ABCD是平行四边形
方法2 两组对边分别相等的四边形是平行四边形
如图,∵ AB=CD,AD=BC,∴四边形ABCD是平行四边形
方法3两组对角分别相等的四边形是平行四边形
如图,∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形
方法4一组对边平行相等的四边形是平行四边形
如图,∵ AB‖CD,AB=CD,∴四边形ABCD是平行四边形
或∵AD‖BC,AD=BC,∴四边形ABCD是平行四边形
方法5 对角线互相平分的四边形是平行四边形
如图,∵ OA=OC,OB=OD,∴四边形ABCD是平行四边形
②矩形:
方法1 有三个角是直角的四边形是矩形
方法2 对角线相等的平行四边形是矩形
③菱形:
方法1 四边都相等的四边形是菱形
方法2 对角线互相垂直的平行四边形是菱形
④正方形
方法1 有一个角是直角的菱形是正方形
方法2有一组邻边相等的矩形是正方形
4、面积公式
①S平行四边形=底×高 ②S矩形=长×宽 ③S正方形=边长×边长
④S菱形=底×高=¬ ¬×(对角线的积),即:S=(a×b)÷2
三、图形与坐标
1、点的对称性:
关于x轴对称的点,横坐标相反,纵坐标相等;
关于y轴对称的点,横坐标相等,纵坐标相反;
关于原点对称的点,横、纵坐标都相反。
例如:若直角坐标系内一点P(a,b),则P关于x轴对称的点为P1(a,-b),P关于y轴对称的点为P2(-a,b),关于原点对称的点为P3(-a,-b)。
解题方法:相等时用“=”连结,相反时两式相加=0。
2、坐标平移: 左右平移:横坐标右加左减,纵坐标不变;
上下平移:横坐标不变,纵坐标上加下减。
例如:若直角坐标系内一点P(a,b)向左平移h个单位,坐标变为P(a-h,b),向右平移h个单位,坐标变为P(a+h,b);向上平移h个单位,坐标变为P(a,b+h),向下平移h个单位,坐标变为P(a,b-h).如:点A(2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A(7,1).
3、在平面直角坐标系中会画轴对称、平移后的图形,并写出图形顶点的坐标。
4、会建平面直角坐标系,用坐标表示相关位置。
5、平面上的点与有序实数对是一 一对应的。
四、一次函数
1、函数自变量的取值:
整式取全体实数,分式则分母不为0,二次根式则根号下的数 0.
例如: 有 ; 则有 。再解出不等式。
2、一次函数y=kx+b(k≠0)的图象是一条直线(含正比例函数y=kx).
①求k的取值: y¬随x增大而增大则k>0;y随x增大而减小则k<0.再解出不等式。
②求函数图像经过的象限:在y=kx+b中,k>0过一、三象限;k<0过二、四象限。b>0向上移;b<0向下移。可得出。
③一次函数y=kx+b(k≠0)的图象平移的方法:
b的值加减即可(加是向上移,减则下移)。
④同一平面内两直线的位置关系:(例如 : : )
若 且 ,则 ; 若 ,则 。
⑤坐标轴上点的特征:
x轴上的点纵坐标为0即(a,0);y轴上的点横坐标为0.即(0,b)。
⑥用待定系数法求一次函数的解析式:
先设一次函数的解析式为y=kx+b,再将已知的两组x、y值代人列出二元一次方程组,求出k、b的值,再代回即可。
五、数据的频数分布
1、频数与频率:频率= ,各小组的频数之和等于总数,各小组的频率之和等于1。
2、频数分布直方图:会读图,计算并将直方图补充完整。
六、辅助线作法
人说几何很困难,难点就在辅助线。辅助线,是虚线,画图注意勿改变。
如何添加辅助线?把握定理和概念。还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。线段垂直平分线,常向两端把线连。
角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。
三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。要证线段倍与半,延长缩短可试验。

初二年级下册数学复习资料浙教版.doc

本文来源:https://www.wddqw.com/40YO.html