初二年级数学上册数学试卷_初二年级期中数学试卷

时间:2023-06-08 13:01:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是( )
A.4cm B.5cm C.9cm D.13cm
【考点】三角形三边关系.
【分析】易得第三边的取值范围,看选项中哪个 在范围内即可.
【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.
故选C.
【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.
2.已知等腰三角形的一边等于3,一边等于6,则它的周长等于( )
A.12 B.15 C.12或15 D.15或18
【考点】等腰三角形的性质;三角形三边关系.
【专题】分类讨论.
【分析】从已知结合等腰三角形的性质进行思考,分腰为3,腰为6两种情况分析,舍去不能构成三角形的情况.
【解答】解:分两种情况讨论,
当三边为3,3,6时 不能构成三角形,舍去;
当三边为3,6,6时,周长为15.
故选B.
【点评】题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
3.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的 玻璃,那么最省事方法是( )
A.带①去 B.带②去 C.带③去 D.①②③都带去
【考点】全等三角形的应用.
【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.
【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;
第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.
故选:C.
【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.
4.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后,仍不一定能保证△ABC≌△A′B′C′,这个补充条件是( )
A.BC=B′C′ B.∠A=∠A′ C.AC=A′C′ D.∠C=∠C′
【考点】全等三角形的判定.
【分析】全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证.
【解答】解:A中两边夹一角,满足条件;
B中两角夹一边,也可证全等;
C中∠B并不是两条边的夹角,C不对;
D中两角及其中一角的对边对应相等,所以D也正确,
故答案选C.
【点评】本题考查了全等三角形的判定;熟练掌握全等三角形的判定,要认真确定各对应关系.
5.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( )
A. B. C. D.
【考点】轴对称图形.
【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
【解答】解:根据轴对称图形定义可知:
A、不是轴对称图形,符合题意;
B、是轴对称图形,不符合题意;
C、是轴对称图形,不符合题意;
D、是轴对称图形,不符合题意.
故选A.
【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.

初二年级期中数学试卷.doc

本文来源:https://www.wddqw.com/7bcn.html