(一)2个中心极限定理和用其计算事件概率的方法
中心极限定理(central limit theorem)是概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理。这组定理是数理统计学和误差分析的理论基础。它是概率论中最重要的一类定理,有广泛的实际应用背景。
在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象。
应用列维-林德伯格定理近似计随机事件的概率时,需要构造定理条件中的独立同分布的随机变量序列;我们可以应用棣莫弗-拉普拉斯中心极限定理近似计算和二项分布相关的随机事件的概率。
(二)真题解析
下面请随看一下往年考研数学(三)中用中心极限定理近似计算随机事件概率的1道真题。
本文讨论了考研数学(三)中应用中心极限定理近似计算有关随机事件的概率的题型,并给出了往年考研数学试卷中的一道真题,希望同学们复习时能熟练掌握求解该类问题的基本方法(主要是构造独立同分布的随机变量序列,然后套用中心极限定理进行近似计算)。“只要朝着一个方向努力,一切都会变得得心应手”,希望打算参加2018考研的学子坚定信念,全面复习,赢在起跑线上。
正在阅读:
2019安徽合肥市中小学招生工作新要求10-27
2017年浙江公务员考试行测答案A类:判断推理(中公版)11-30
[水粉画怎么调色]水粉画调色学习06-22
2016新疆二级结构工程师成绩查询入口03-06
高三话题作文:成熟的低调_800字11-26
搞笑又活跃的亲子游戏大全集01-11
中考优秀作文范文:忽略的有时是最重要的01-16