【#高一# 导语】人们的生活中充满了数学,而数学的世界则需要人们努力的探索。以下是®文档大全网整理的《高一年级必修五数学知识点》希望能够帮助到大家。
求函数的解析式一般有四种情况
(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.
(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.
(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.
(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.
1.等差数列的定义
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.
2.等差数列的通项公式
若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.
3.等差中项
如果A=(a+b)/2,那么A叫做a与b的等差中项.
4.等差数列的常用性质
(1)通项公式的推广:an=am+(n-m)d(n,m∈N.).
(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N.).
(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N.)是公差为md的等差数列.
(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.
(5)S2n-1=(2n-1)an.
(6)若n为偶数,则S偶-S奇=nd/2;若n为奇数,则S奇-S偶=a中(中间项).
函数的奇偶性
1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).
正确理解奇函数和偶函数的定义,要注意两点:
(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;
(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).
2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:
注意如下结论的运用:
(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;
(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函数的复合函数的奇偶性通常是偶函数;
(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。
3、有关奇偶性的几个性质及结论
(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.
(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.
(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.
(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。
(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.
(6)奇偶性的推广
函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。
映射、函数、反函数
1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.
2、对于函数的概念,应注意如下几点:
(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.
(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.
3、求函数y=f(x)的反函数的一般步骤:
(1)确定原函数的值域,也就是反函数的定义域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.
注意
①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.
②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.
复数定义
我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。
复数表达式
虚数是与任何事物没有联系的,是绝对的,所以符合的表达式为:
a=a+ia为实部,i为虚部
复数运算法则
加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;
减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法则:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最终结果还是0,也就在数字中没有复数的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一个函数。
复数与几何
①几何形式
复数z=a+bi被复平面上的点z(a,b)确定。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。
②向量形式
复数z=a+bi用一个以原点O(0,0)为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数四则运算得到恰当的几何解释。
③三角形式
复数z=a+bi化为三角形式
直线与方程
直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
直线的斜率
定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。斜率反映直线与轴的倾斜程度。
(注意下面四点)
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
正在阅读:
高一年级必修五数学知识点03-08
部编版四年级上册语文教学计划_部编版四年级上册语文教学计划08-19
诗词中关于爱情的古诗句02-23
2017年河北招收100名免费本科医学生12-31
窃玩记作文300字10-17
[班主任培训心得体会与收获]新班主任培训心得体会范例07-27
2017年陕西职称俄语报名入口03-17