高二数学必修二内容,高二数学必修二测试题及答案

副标题:高二数学必修二测试题及答案

时间:2024-06-30 03:46:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#高二# 导语】着眼于眼前,不要沉迷于玩乐,不要沉迷于学习进步没有别*的痛苦中,进步是一个由量变到质变的过程,只有足够的量变才会有质变,沉迷于痛苦不会改变什么。®文档大全网高二频道为你整理了《高二数学必修二测试题及答案》,希望对你有所帮助!

  【一】

  卷Ⅰ

  一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

  1.对于常数、,“”是“方程的曲线是双曲线”的

  A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件

  2.命题“所有能被2整除的数都是偶数”的否定是

  A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数

  C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数

  3.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为

  A.B.C.D.

  4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题是“甲降落在指定范围”,是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为

  A.B.C.D.

  5.若双曲线的离心率为,则其渐近线的斜率为

  A.B.C.D.

  6.曲线在点处的切线的斜率为

  A.B.C.D.

  7.已知椭圆的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线的焦点坐标为

  A.B.C.D.

  8.设是复数,则下列命题中的假命题是

  A.若,则B.若,则

  C.若,则D.若,则

  9.已知命题“若函数在上是增函数,则”,则下列结论正确的是

  A.否命题“若函数在上是减函数,则”是真命题

  B.逆否命题“若,则函数在上不是增函数”是真命题

  C.逆否命题“若,则函数在上是减函数”是真命题

  D.逆否命题“若,则函数在上是增函数”是假命题

  10.马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的

  A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件

  11.设,,曲线在点()处切线的倾斜角的取值范围是,则到曲线对称轴距离的取值范围为

  A.B.C.D.

  12.已知函数有两个极值点,若,则关于的方程的不同实根个数为

  A.2B.3C.4D.5

  卷Ⅱ

  二、填空题:本大题共4小题,每小题5分,共20分.

  13.设复数,那么等于________.

  14.函数在区间上的值是________.

  15.已知函数,则=________.

  16.过抛物线的焦点作倾斜角为的直线,与抛物线分别交于、两点(在轴左侧),则.

  三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.

  17.(本小题满分10分)

  已知z是复数,和均为实数(为虚数单位).

  (Ⅰ)求复数;

  (Ⅱ)求的模.

  18.(本小题满分12分)

  已知集合,集合

  若是的充分不必要条件,求实数的取值范围.

  19.(本小题满分12分)

  设椭圆的方程为点为坐标原点,点,分别为椭圆的右顶点和上顶点,点在线段上且满足,直线的斜率为.

  (Ⅰ)求椭圆的离心率;

  (Ⅱ)设点为椭圆的下顶点,为线段的中点,证明:.

  20.(本小题满分12分)

  设函数(其中常数).

  (Ⅰ)已知函数在处取得极值,求的值;

  (Ⅱ)已知不等式对任意都成立,求实数的取值范围.

  21.(本小题满分12分)

  已知椭圆的离心率为,且椭圆上点到椭圆左焦点距离的最小值为.

  (Ⅰ)求的方程;

  (Ⅱ)设直线同时与椭圆和抛物线相切,求直线的方程.

  22.(本小题满分12分)

  已知函数(其中常数).

  (Ⅰ)讨论函数的单调区间;

  (Ⅱ)当时,,求实数的取值范围.

  参考答案

  一.选择题

  CDBACCDABBDB

  二.填空题

  三.解答题

  17.解:(Ⅰ)设,所以为实数,可得,

  又因为为实数,所以,即.┅┅┅┅┅┅┅5分

  (Ⅱ),所以模为┅┅┅┅┅┅┅10分

  18.解:(1)时,,若是的充分不必要条件,所以,

  ,检验符合题意;┅┅┅┅┅┅┅4分

  (2)时,,符合题意;┅┅┅┅┅┅┅8分

  (3)时,,若是的充分不必要条件,所以,

  ,检验不符合题意.

  综上.┅┅┅┅┅┅┅12分

  19.解(Ⅰ)已知,,由,可得,┅┅┅┅┅┅┅3分

  所以,所以椭圆离心率;┅┅┅┅┅┅┅6分

  (Ⅱ)因为,所以,斜率为,┅┅┅┅┅┅┅9分

  又斜率为,所以(),所以.┅┅┅┅┅┅┅12分

  20.解:(Ⅰ),因为在处取得极值,所以,解得,┅┅┅┅┅┅┅3分

  此时,

  时,,为增函数;时,,为减函数;

  所以在处取得极大值,所以符合题意;┅┅┅┅┅┅┅6分

  (Ⅱ),所以对任意都成立,所以,所以.┅┅┅┅┅┅┅12分

  21.解:(Ⅰ)设左右焦点分别为,椭圆上点满足所以在左顶点时取到最小值,又,解得,所以的方程为

  .(或者利用设解出得出取到最小值,对于直接说明在左顶点时取到最小值的,酌情扣分);┅┅┅┅┅┅┅4分

  (Ⅱ)由题显然直线存在斜率,所以设其方程为,┅┅┅┅┅┅┅5分

  联立其与,得到

  ,,化简得┅┅┅┅┅┅┅8分

  联立其与,得到

  ,,化简得,┅┅┅┅┅┅┅10分

  解得或

  所以直线的方程为或┅┅┅┅┅┅┅12分

  22.(Ⅰ),

  设,该函数恒过点.

  当时,在增,减;┅┅┅┅┅┅┅2分

  当时,在增,减;┅┅┅┅┅┅┅4分

  当时,在增,减;┅┅┅┅┅┅┅6分

  当时,在增.┅┅┅┅┅┅┅8分

  (Ⅱ)原函数恒过点,由(Ⅰ)可得时符合题意.┅┅┅┅┅┅┅10分

  当时,在增,减,所以,不符合题意.

  ┅┅┅┅┅┅┅12分

  【二】

  一、选择题

  1.一个物体的位移s(米)和与时间t(秒)的关系为s?4?2t?t,则该物体在4秒末的瞬时速度是A.12米/秒B.8米/秒C.6米/秒D.8米/秒2.由曲线y=x2,y=x3围成的封闭图形面积为为

  A.21711B.C.D.

  41212323.给出下列四个命题:(1)若z?C,则z≥0;(2)2i-1虚部是2i;(3)若a?b,则a?i?b?i;(4)若z1,z2,且z1>z2,则z1,z2为实数;其中正确命题的个数为....A.1个B.2个C.3个D.4个

  4.在复平面内复数(1+bi)(2+i)(i是虚数单位,b是实数)表示的点在第四象限,则b的取值范围是

  A.b

  B.b??11C.?

  5.下面几种推理中是演绎推理的为....

  A.由金、银、铜、铁可导电,猜想:金属都可导电;

  1111,,,???的通项公式为an?

  B.猜想数列(n?N?);n(n?1)1?22?33?42

  C.半径为r圆的面积S??r,则单位圆的面积S??;

  D.由平面直角坐标系中圆的方程为(x?a)2?(y?b)2?r2,推测空间直角坐标系中球的方程为

  (x?a)2?(y?b)2?(z?c)2?r2.

  6.已知f?x???2x?1??2a?3a,若f???1??8,则f??1??xA.4B.5C.-2D.-3

  37.若函数f?x??lnx?ax在点P?1,b?处的切线与x?3y?2?0垂直,则2a?b等于A.2B.0C.-1D.-28.

  ???sinx?cosx?dx的值为A.0B.

  2?2??C.2D.449.设f?x?是一个多项式函数,在?a,b?上下列说法正确的是

  A.f?x?的极值点一定是最值点B.f?x?的最值点一定是极值点C.f?x?在?a,b?上可能没有极值点D.f?x?在?a,b?上可能没有最值点

  10.函数f?x?的定义域为?a,b?,导函数f??x?在?a,b?内的图像如图所示,则函数f?x?在?a,b?内有极小值点A.1个B.2个C.3个D.4个

  11.已知a1?1,an?1?an且?an?1?an??2?an?1?an??1?0,计算a2,a3,猜想an等于

  A.nB.nC.nD.n?3?n12.已知可导函数f(x)(x?R)满足f¢(x)>f(x),则当a?0时,f(a)和eaf(0)大小关系为A.f(a)eaf(0)C.f(a)=eaf(0)D.f(a)≤eaf(0)

  232二、填空题13.若复数z=(a-2)+3i(a?R)是纯虚数,则

  14.f(n)=1+a+i

  =.1+ai

  111++鬃?(n?N+)23n经计算的f(2)?357,f(4)?2,f(8)?,f(16)?3,f(32)?,推测当n≥2时,有______.2221(n?N+),记f(n)?(1?a1)(1?a2)???(1?an),试通过计算

  (n+1)215.若数列?an?的通项公式an=f(1),f(2),f(3)的值,推测出f(n)?________________.

  16.半径为r的圆的面积s(r)??r2,周长C(r)?2?r,若将r看作(0,+∞)上的变量,则(?r2)'?2?r①,①式用语言可以叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R的球,若将R看作(0,+?)上的变量,请写出类比①的等式:____________________.上式用语言可以叙述为_________________________.

  三、解答题:17.抛物线y?x2?1,直线x?2,y?0所围成的图形的面积

  18.已知a?b?c,求证:

  114??.a?bb?ca?c2an?2an?219.已知数列{an}的前n项和Sn满足:Sn?,且an?0,n?N?.

  2an(1)求a1,a2,a3;(2)猜想{an}的通项公式,并用数学归纳法证明21.设函数f?x??xekx?k?0?

  (1)求曲线y?f?x?在点0,f?0?处的切线方程.

  (2)若函数f?x?在区间??1,1?内单调递增,求k的取值范围.22.已知函数f(x)=alnx+x(a为实常数).

  (1)若a=-2,求证:函数f(x)在(1,+?)上是增函数;(2)求函数f(x)在[1,e]上的最小值及相应的x值;

  2

  2??

  一、选择题

  题号答案1C2A3A4A5C6A7D8C9C10A11B12B12.提示:令g(x)=e-xf(x),则gⅱ(x)=e-x[f(x)-f(x)]>0.

  所以g(x)在(-?,?)上为增函数,g(a)>g(0).e-af(a)>e0f(0),即f(a)>eaf(0),故选B.

  二、填空题

  13.

  n?24-3in14.f(2)?

  25n?2111f(n)?(1?2)(1?2)???[1?]

  2n?223(n?1)215.f(n)?111111?(1?)(1?)(1?)(1?)???(1?)(1?)2233n?1n?1

  13243nn?2n?2??????...???22334n?1n?12n?216.(?R)'?4?R;球的体积函数的导数等于球的表面积函数

  4332三、解答题

  17.解由x?1?0,得抛物线与轴的交点坐标是(?1,0)和(1,0),所求图形分成两块,

  分别用定积分表示面积

  2S1??|x2?1|dx,S2??(x2?1)dx.

  ?1112故面积S?S1?S2??1?1|x2?1|dx??(x2?1)dx=?(1?x2)dx??(x2?1)dx

  1?11212x3=(x?)318.证明:∵

  1?111818x32?(?x)1=1??1???2?(?1)?.

  333333a-ca-ca-b+b-ca-b+b-c+=+a-bb-ca-bb-cb-ca-bb-ca-b+≥2+2?a-bb-ca-bb-c4,(a>b>c)

  =2+∴

  a-ca-c114.+≥4得+≥a-bb-ca-bb-ca-ca11+-1,所以,a1=-1?2a119.(1)a1=S1=3,又∵an>0,所以a1=3-1.

  S2=a1?a2?a21??1,所以a2?5?3,2a23

  S3=a1?a2?a3?(2)猜想an=a31??1所以a3?7?5.2a32n-1.

  3-1成立.

  2k-1成立

  2k+1.

  2n+1-证明:1o当n=1时,由(1)知a1=2o假设n=k(k?N+)时,ak=2k+1-ak+1=Sk?1?Sk?(ak?1aa111-??1)?(k??1)=k+1+2ak+12ak?12ak2所以ak+1+22k+1ak+1-2=0

  ak+1=

  2(k+1)+1-2(k+1)-1所以当n=k+1时猜想也成立.综上可知,猜想对一切n?N+都成立.

  kxkx¢¢f(x)=e+kxe21.解:(1),f(0)=1,f(0)=0

  ∴y=f(x)在(0,0)处的切线方程为y=x.

  (x)=ekx+kxekx=(1+kx)ekx=0,得x=-(2)法一f¢若k>0,则当x?(?,当x?(1(k10)k1(x)<0,f(x)单调递减,)时,f¢k1(x)>0,f(x)单调递增.,+?)时,f¢k1若k<0,则当x?(?,(x)>0,f(x)单调递增.),f¢k1当x?((x)<0,f(x)单调递减.,+?)时,f¢k若f(x)在区间(-1,1)内单调递增,1≤-1,即k≤1.k1当k<0时,-≥1,即k≥-1.

  k故f(x)在区间(-1,1)内单调递增时

  当k>0时,-k的取值范围是[-1,0)U(0,1]

  法二∵f(x)在区间(-1,1)内单调递增,

  (x)≥0在区间(-1,1)上恒成立.∴f¢ekx+kxekx≥0,∵ekx>0,∴1+kx≥0.即1+kx≥0在区间(-1,1)上恒成立.令g(x)=1+kx,

  4

  ìg(-1)≥0??∴í解得-1≤k≤1.?g(1)≥0??当k=0时,f(x)=1.

  故k的取值范围是[-1,0)U(0,1].

  22.解:(1)当a??2时,f(x)?x2?2lnx,

  2(x2-1)(x)=>0.x?(1,?),f¢x故函数f(x)在(1,+?)上是增函数.2x2+a(x)=>0.(2)f¢x当x?[1,e],2x2+a?[a2,a+2e2].

  若a≥-2,f¢,(x)在[1,e]上非负(仅当a=-2,x=1时,f¢(x)=0)故函数f(x)在[1,e]上是增函数.此时,[f(x)]min=f(1)=1.若-2e2

  故[f(x)]min=f(-若a≤-2e2,f¢(x)在[1,e]上非正(仅当时a=-2e2,x=e时,f¢(x)=0)故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2.

  综上可知,当a≥-2时,f(x)的最小值为1,相应的x的值为1;

  当-2e2

  2e2时,f(x)的最小值为a+e2,相应的x值为e.

高二数学必修二测试题及答案.doc

本文来源:https://www.wddqw.com/D8d5.html