【#高一# 导语】第一次工业革命,人类发明了蒸汽机,没有数学又哪里会有现在先进的汽车自动化生产线。®文档大全网准备了高一年级数学学科寒假作业,具体请看以下内容。
一、选择题
1.若直线l的倾斜角为120°,则这条直线的斜率为( )
A.3 B.-3
C.33 D.-33
【解析】 k=tan 120°=-3.
【答案】 B
2.(2013•泉州高一检测)过点M(-2,a),N(a,4)的直线的斜率为-12,则a等于( )
A.-8 B.10
C.2 D.4
【解析】 ∵k=4-aa+2=-12,∴a=10.
【答案】 B
3.若A(-2,3),B(3,-2),C(12,m)三点在同一条直线上,则m的值为( )
A.-2 B.2
C.-12 D.12
【解析】 ∵A,B,C三点在同一条直线上,
∴kAB=kAC,
即-2-33--2=m-312--2,
解得m=12.
【答案】 D
4.直线l过原点,且不过第三象限,则l的倾斜角α的取值集合是( )
A.{α|0°≤α<180°}
B.{α|90°≤α<180°}
C.{α|90°≤α<180°或α=0°}
D.{α|90°≤α≤135°}
【解析】 不过第三象限,说明倾斜角不能取0°<α<90°,即可取0°或90°≤α<180°.
【答案】 C
5.(2013•西安高一检测)将直线l向右平移4个单位,再向下平移5个单位后仍回到原来的位置,则此直线的斜率为( )
A.54 B.45
C.-54 D.-45
【解析】 设点P(a,b)是直线l上的任意一点,当直线l按题中要求平移后,点P也做同样的平移,平移后的坐标为(a+4,b-5),由题意知这两点都在直线l上,∴直线l的斜率为k=b-5-ba+4-a=-54.w
【答案】 C
二、填空题
6.直线l经过A(2,1),B(1,m2)两点,(m∈R).那么直线l的倾斜角的取值范围为________.
【解析】 k=m2-11-2=1-m2≤1,∴倾斜角0°≤α≤45°或90°<α<180°.
【答案】 0°≤α≤45°或90°<α<180°
7.已知三点A(2,-3),B(4,3),C(5,k2)在同一直线上,则k=________.
【解析】 kAB=3--34-2=3,kBC=k2-35-4=k2-3.
∵A、B、C在同一直线上,
∴kAB=kBC,即3=k2-3,解得k=12.
【答案】 12
8.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则1a+1b的值等于________.
【解析】 ∵A、B、C三点共线,∴0-2a-2=b-20-2,
∴4=(a-2)(b-2),
∴ab-2(a+b)=0,∵ab≠0,
∴1-2(1a+1b)=0,∴1a+1b=12.
【答案】 12
三、解答题
9.求经过下列两点的直线的斜率,并判断其倾斜角是锐角还是钝角.
(1)A(0,-1),B(2,0);
(2)P(5,-4),Q(2,3);
(3)M(3,-4),N(3,-2).
【解】 (1)kAB=-1-00-2=12,
∵kAB>0,∴直线AB的倾斜角是锐角.
(2)kPQ=-4-35-2=-73.
∵kPQ<0,∴直线PQ的倾斜角是钝角.
(3)∵xM=xN=3.
∴直线MN的斜率不存在,其倾斜角为90°.
10.(2013•郑州高一检测)已知直线l的倾斜角为α,且tan α=±1,点P1(2,y1)、P2(x2,-3)、P3(4,2)均在直线l上,求y1、x2的值.
【解】 当tan α=1时,-3-2x2-4=1,
∴x2=-1,y1-22-4=1,∴y1=0.
当tan α=-1时,-3-2x2-4=-1,
∴x2=9,
y1-22-4=-1,∴y1=4.
11.已知点P(x,y)在以点A(1,1),B(3,1),C(-1,6)为顶点的三角形内部及边界上运动,求kOP(O为坐标原点)的取值范围.
【解】 如图所示,设直线OB、OC的倾斜角分别为α1、α2,斜率分别为k1、k2,则直线OP的倾斜角α满足α1≤α≤α2.
又∵α2>90°,
∴直线OP的斜率kOP满足kOP≥k1或kOP≤k2.
又k1=13,k2=-6,
∴kOP≥13或kOP≤-6.
高一年级数学学科寒假作业精选.doc