[高二数学二项式定理教学视频]高二数学《二元一次不等式组》知识点

副标题:高二数学《二元一次不等式组》知识点

时间:2023-06-18 10:37:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【定义】
有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
二元一次方程定义:一个含有两个未知数,并且未知数的指数都是1的整式方程,叫二元一次方程。
二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:一般的,二元一次方程组的两个一元二次方程的公共解,叫做二元一次方程组的解。
一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
【消元的方法】
消元的方法有两种:
代入消元法
例:解方程组 :
x+y=5①
6x+13y=89②
解:由①得
x=5-y③
把③代入②,得
6(5-y)+13y=89
即 y=59/7
把y=59/7代入③,得
x=5-59/7
即 x=-24/7
∴ x=-24/7
y=59/7 为方程组的解
我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。
加减消元法
例:解方程组:
x+y=9①
x-y=5②
解:①+②
2x=14
即 x=7
把x=7代入①,得
7+y=9
解,得:y=2
∴ x=7
y=2 为方程组的解
像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法。
【二元一次方程组的解】
二元一次方程组的解有三种情况:
1.有一组解
如方程组x+y=5①
6x+13y=89②
x=-24/7
y=59/7 为方程组的解
2.有无数组解
如方程组x+y=6①
2x+2y=12②
因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解
如方程组x+y=4①2x+2y=10②,
因为方程②化简后为x+y=5
这与方程①相矛盾,所以此类方程组无解。

高二数学《二元一次不等式组》知识点.doc

本文来源:https://www.wddqw.com/E22n.html