【#初中奥数# 导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。下面是©文档大全网为大家带来的“初中奥数:应用题示例和解析”,欢迎大家阅读。
解法一:从车尾离开第一个隧道到车头进入第二个隧道,火车行了6-3-2=1分钟。行了60÷60×1000=1000米。两座隧道之间相距的距离是1000+800=1800米。
解法二:火车速度60千米/时=1千米/分;行驶自身长度时间0.8/1=0.8分。火车行驶两隧道之间的距离用时:6-3-(2-0.8)=1.8分。两座隧道之间相距1×1.8=1.8千米。
【题目2】甲、乙两车分别从A,B两地同时相向开出,四小时后两车相遇,然后各自继续行驶三小时,此时甲车距B地10千米,乙车距A地80千米.问甲车到达B地时乙车还要经过多少小时才能到达A地?
解法一:说明甲车和乙车4-3=1小时共行10+80=90千米。两车行4+3=7小时,甲车比乙车多行80-10=70千米。所以甲车比乙车每小时多行70÷7=10千米。所以甲车每小时行(90+10)÷2=50千米,乙车每小时行90-50=40千米。当甲到底B地时,用去10÷50=0.2小时,乙行余下的80千米需要80÷40=2小时,所以还需要2-0.2=1.8小时。
解法二:总路程是(10+80)÷(1-3/4)=360千米。甲车行4+3=7小时行了全程的(360-10)÷360=35/36,所以,甲车行完全程需要7÷35/36=7.2小时。乙车7小时行了全程的(360-80)÷360=7/9,所以乙车行完全程需要7÷7/9=9小时。所以甲车到达时,乙车还需要9-7.2=1.8小时。
解法三:两车行4+3=7小时,甲车比乙车多行80-10=70千米。甲车每小时比乙车多行70÷7=10千米。如果再行1小时,那么甲车比乙车就多行70+10=80千米,而且甲车和乙车共行了两个全程。所以,甲车超出部分和乙车还差的部分相等,即80÷2=40千米。所以,乙车需要80÷40=2小时到达。甲车之需要10÷(10+40)=0.2小时到达。所以当甲车到达时,乙车还需要2-0.2=1.8小时。
解法四:速度和80+10=90(千米/小时),速度差(80-10)/(4+3)=10(千米/小时);甲车速度:(90+10)/2=50(千米/小时),乙车速度:90-40=50(千米/小时)。两地距离:90*4=360(千米/小时)。当甲车到达B地时,乙车距A地:360*(5-4)/5=72(千米),还需要:72/40=1.8(小时)
解法五:A、B两地相距(10+80)×4=360千米,甲乙两车的速度比是(360-10):(360-80)=5:4,4小时相遇时,甲车就行5/9,乙车行4/9,甲车行完的时候,乙车还需要4÷4/9-4÷5/9=1.8小时。
考点:相遇问题.
专题:行程问题.
分析:甲队每小时行5千米,乙对每小时行4千米,两地相距18千米,根据路程÷速度和=相遇时间可知,两人相遇时共行了18÷(4+5)=2小时,在这两小时中,这名骑自行车的学生始终在运动,所以两队相遇时,骑自行车的学生共行:15×2=30千米.
解答:解:18÷(4+5)×15
=18÷9×15,
=30(千米).
答:两队相遇时,骑自行车的学生共行30千米.
点评:明确两队相遇时,骑自行车的学生始终在运动,然后根据时间×速度=所行路程求出骑自行车的学生行的路程是完成本题的关键.
对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC
证明:
已知(A+B)=(π-C)
所以tan(A+B)=tan(π-C)
则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ
定义域和值域
sin(x),cos(x)的定义域为R,值域为[-1,1]。
tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。
cot(x)的定义域为x不等于kπ(k∈Z),值域为R。
y=a·sin(x)+b·cos(x)+c的值域为[c-√(a2+b2),c+√(a2+b2)]
初中奥数:应用题示例和解析.doc