初一年级上册数学计算题:初一年级上册数学复习提纲浙教版

副标题:初一年级上册数学复习提纲浙教版

时间:2023-06-05 11:38:02 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第一章 有理数

  1.1 正数与负数

  ①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)

  ②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

  ③0既不是正数也不是负数。0是正数和负数的分界,是的中性数。

  注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等

  1.2 有理数

  1.有理数(1)整数:正整数、0、负整数统称整数(integer),

  (2)分数;正分数和负分数统称分数(fraction)。

  (3)有理数;整数和分数统称有理数(rational number). 以用m/n(其中m,n是整数,n≠0)表示有理数。

  2.数轴

  (1)定义 :通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  (2)数轴三要素:原点、正方向、单位长度。

  (3)原点:在直线上任取一个点表示数0,这个点叫做原点(origin)。

  (4)数轴上的点和有理数的关系:

  所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  1.3 有理数的加减法

  ①有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加。

  2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3.一个数同0相加,仍得这个数。

  加法的交换律和结合律

  ②有理数减法法则:减去一个数,等于加这个数的相反数。

  1.4 有理数的乘除法

  ①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  乘积是1的两个数互为倒数。乘法交换律/结合律/分配律

  ②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

  两数相除,同号得正,异号得负,并把绝对值相除。

  0除以任何一个不等于0的数,都得0。

  1.5 有理数的乘方

  求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

  有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。

  从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.

  第二章 整式的加减

  2.1 整式

  单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.

  单项式的系数:是指单项式中的数字因数;

  单项数的次数:是指单项式中所有字母的指数的和.

  多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里 是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.

  它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

  单项式和多项式统称为整式。

  2.2整式的加减

  同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

  同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关

  合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

  合并同类项法则:

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

  字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。

  如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。

  整式加减的一般步骤:

  1、如果遇到括号按去括号法则先去括号. 2、结合同类项. 3、合并同类项

  2.3整式的乘法法则 :

  单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;

  单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。

  多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

  2.4整式的除法法则

  单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

初一年级上册数学复习提纲浙教版.doc

本文来源:https://www.wddqw.com/Jj4n.html