第一章 整式的运算
一、整式
1、单项式:表示数与字母的积的代数式。另外规定单独的一个数或字母也是单项式。
单项式中的数字因数叫做单项式的系数。注意系数包括前面的符号,系数是1时通常省略, 是系数, 的系数是
单项式的次数是指所有字母的指数的和。
2、多项式:几个单项式的和叫做多项式。 (几次几项式)
每一个单项式叫做多项式的项,注意项包括前面的符号。
多项式的次数:多项式中次数的项的次数。项的次数是几就叫做几次项,其中不含字母的项叫做常数项。
3、整式;单项式与多项式统称为整式。(最明显的特征:分母中不含字母)
二、整式的加减:①先去括号; (注意括号前有数字因数)
②再合并同类项。 (系数相加,字母与字母指数不变)
三、幂的运算性质
1、同底数幂相乘:底数不变,指数相加。
2、幂的乘方:底数不变,指数相乘。
3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。
4、零指数幂:任何一个不等于0的数的0次幂等于1。 ( ) 注意00没有意义。
5、负整数指数幂: ( 正整数, )
6、同底数幂相除:底数不变,指数相减。 ( )
注意:以上公式的正反两方面的应用。
常见的错误: , , , ,
四、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。
五、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。
六、多项式乘以多项式:连同各项的符号把其中一个多项式的各项乘以另一个多项式的每一项。
七、平方差公式
两数的和乘以这两数的差,等于这两数的平方差。
即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方。
八、完全平方公式
两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍。
常见错误:
九、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式。
十、多项式除以单项式:连同各项的符号,把多项式的各项都除以单项式。
第二章 平行线与相交线
一、互余、互补、对顶角
1、相加等于90°的两个角称这两个角互余。 性质:同角(或等角)的余角相等。
2、相加等于180°的两个角称这两个角互补。 性质:同角(或等角)的补角相等。
3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角。 对顶角的性质:对顶角相等。
4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角。 (相邻且互补)
二、三线八角: 两直线被第三条直线所截
①在两直线的相同位置上,在第三条直线的同侧(旁)的两个角叫做同位角。
②在两直线之间(内部),在第三条直线的两侧(旁)的两个角叫做内错角。
③在两直线之间(内部),在第三条直线的同侧(旁)的两个角叫做同旁内角。
三、平行线的判定
①同位角相等
②内错角相等 两直线平行
③同旁内角互补
四、平行线的性质
①两直线平行,同位角相等。 ②两直线平行,内错角相等。 ③两直线平行,同旁内角互补。
五、尺规作图(用圆规和直尺作图)
①作一条线段等于已知线段。 ②作一个角等于已知角。