【#初三# 导语】要想学好数学必须要有一个良好的数学基础,对于数学不太理想的同学来说,要想在数学上慢慢追上来,必须要多做题,虽然说数学不是打题海站,但对于基础还比较薄弱的同学来说,搞题海战一定是有一定的效果。本篇文章是©文档大全网为您整理的《九年级上册数学练案答案沪教版》,供大家阅读。
1.九年级上册数学练案答案沪教版 篇一
1、8
2、9/16
3-5ACA
6、略
7、OM/ON=BC/DE=AM/AN=4
8、(1)AC=10,OC=5.
∵△OMC∽△BAC,
∴OM/BA=OC/BC,OM=15/4
(2)75/384
【图形的位似第1课时答案】
1、3:2
2、△EQC,△BPE.
3、B
4、A.
5、略.
6、625:1369
7、(1)略;
(2)△OAB与△OEF是位似图形.
【图形的位似第2课时答案】
1、(9,6)
2、(-6,0),(2,0),(-4,6)
3、C.
4、略.
5、(1)A(-6,6),B(-8,0);
(2)A′(-3,3),B′(-4,0),C′(1,0),D′(2,3)
6、(1)(0,-1);
(2)A₂(-3,4),C₂(-2,2);
(3)F(-3,0).
2.九年级上册数学练案答案沪教版 篇二
CABBA
6、7;3
7、7/4或5/4
8、±3
9、3
10、1;-3
11、7或3
12、0
能力提升
(2)1/3或-1
14、根据题意得x₁+x₂=-5/2,x₁x₂=-1/2
(1)3
(2)-29/2
15、由Δ=(4k+1)2-4×2×(2k2-1)
=16k2+8k+1-16k2+8
=8k+9
即(1)当k>-9/8时,Δ>0,即方程有两个不相等的实数根
(2)当k=-9/8时,Δ=0,即方程有两个相等的实数根
(3)当k<-9/8时,Δ<0,即方程没有实数根。
16、∵a2-10a+21=0,
∴(a-3)(a-7)=0,
∴a₁=3,a₂=7,
∵三角形的两边长分别为3cm和7cm,第三边长为acm,而3+3<7,
∴a=7,
∴此三角形的周长=7+7+3=17(cm)
探索研究
17、(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(5﹣x)cm,
依题意列方程得x2+(5﹣x)2=17,
整理得:x2-5x+4=0,(x﹣4)(x﹣1)=0,
解方程得x₁=1,x₂=4,
1×4=4cm,20﹣4=16cm
或4×4=16cm,20﹣16=4cm
因此这段铁丝剪成两段后的长度分别是4cm、16cm。
(2)两个正方形的面积之和不可能等于12cm2。
理由:设两个正方形的面积和为y,
∵y=12>0,
∴当x=5/2时,y的最小值=12.5>12,
∴两个正方形的面积之和不可能等于12cm2;
(另解:由(1)可知x2+(5﹣x)2=12,化简后得2x2﹣10x+13=0,
∵△=(﹣10)2﹣4×2×13=﹣4<0,
∴方程无实数解;
所以两个正方形的面积之和不可能等于12cm2)。
3.九年级上册数学练案答案沪教版 篇三
基础知识
1、向下;x=-3;(-3,0)
2、左;3;右;3
3、y=3x2+2;y=3x2-1;y=3(x+1)2;
y=3(x-3)2
4、1;向上;x=-1
5、(1,0)
6、A
7、题目略
(1)形状相同,开口方向都向上
(2)y=1/2x2顶点坐标为(0,0),对称轴是y轴
y=1/2(x+2)2顶点坐标为(-2,0),对称轴是x=-2
y=1/2(x-2)2顶点坐标为(2,0),对称轴是x=2
(3)y=1/2(x+2)2是y=1/2x2向左平移2个单位长度得到,
y=1/2(x-2)2是y=1/2x2向右平移2个单位长度得到。
能力提升
8、C
9、B
10、函数y=a(x+c)2,对称轴x=-c,又已知对称轴为x=2,因此-c=2c=-2
则函数方程变为y=a(x-2)2,将x=1y=3代入a(1-2)2=3,解得a=3,故a=3,c=-2
11、y=1/4x2+x+1=1/4(x2+4x)+1=1/4(x+2)2,对称轴x=-2,顶点坐标(-2,0)
探索研究
12、y=x2-2x+1=(x-1)2,因为这是左移2个单位后得到的,
根据左加右减(即左移为加,右移为减)可得原来的二次方程应为:y=[(x-1)-2]2=(x-3)2=x2-6x+9
所以b=-6,c=9
13、甲:开口向上,所以a>0
乙:对称轴是x=2;所以k=2
丙:与y轴的交点到原点的距离为2,x=0时,y=2,即a×(0-2)2=2,4a=2,a=1/2,因此y=(x-2)2/2
4.九年级上册数学练案答案沪教版 篇四
基础知识
1、B
2、B
3、D
4、y=(50÷2-x)x=25x-x2
5、y=200x2+600x+600
6、题目略
(1)由题意得a+1≠0,且a2-a=2所以a=2
(2)由题意得a+1=0,且a-3≠0,所以a=-1
7、解:由题意得,大铁片的面积为152cm2,小铁片面积为x2cm2,则y=152–x2=225–x2
能力提升
8、B
9、y=n(n-1)/2;二次
10、题目略
(1)S=x×(20-2x)
(2)当x=3时,S=3×(20-6)=42平方米
11、题目略
(1)S=2x2+2x(x+2)+2x(x+2)=6x2+8x,即S=6x2+8x;
(2)y=3S=3(6x2+8x)=18x2+24x,即y=18x2+24x
探索研究
12、解:(1)如图所示,根据题意,有点C从点E到现在位置时移的距离为2xm,即EC﹦2x.
因为△ABC为等腰直角三角形,所以∠BCA﹦45°.
因为∠DEC﹦90°,所以△GEC为等腰直角三角形,以GE﹦EC﹦2x,所以y=1/2×x×2x=2x2(x≥0).
(3)当重叠部分的面积是正方形面积的一半时,即y=1/2×42=8,所以2x2=8
解得x﹦2(s).因此经过2s,重叠部分的面积是正方形面积的一半。
5.九年级上册数学练案答案沪教版 篇五
1、21
2、1.2,14.4
3、C
4、A
5、CD=3,AB=6,B′C′=3,
∠B=70°,∠D′=118°
6、(1)AB=32,CD=33;
(2)88°.
7、不相似,设新矩形的长、宽分别为a+2x,b+2x,
(1)a+2xa-b+2xb=2(b-a)xab,
∵a>b,x>0,
∴a+2xa≠b+2xb;
(2)a+2xb-b+2xa=(a-b)(a+b+2x)ab≠0,
∴a+2xb≠b+2xa,
由(1)(2)可知,这两个矩形的边长对应不成比例,所以这两个矩形不相似.
【1.2怎样判定三角形相似第1课时答案】
1、DE∶EC,基本事实9
2、AE=5,基本事实9的推论
3、A
4、A
5、5/2,5/3
6、1:2
7、AO/AD=2(n+1)+1,
理由是:
∵AE/AC=1n+1,设AE=x,则AC=(n+1)x,EC=nx,过D作DF∥BE交AC于点F,
∵D为BC的中点,
∴EF=FC,
∴EF=nx/2.
∵△AOE∽△ADF,
∴AO/AD=AE/AF=2n+2=2(n+1)+1.
【1.2怎样判定三角形相似第2课时答案】
1、∠ADC=∠ACB或∠ACD=∠B
2、∠C=∠E或∠B=∠D
3-5BCC
6、△ABC∽△AFG.
7、△ADE∽△ABC,△ADE∽△CBD,△CBD∽△ABC.
【1.2怎样判定三角形相似第3课时答案】
1、AC/2AB
2、4
3、C
4、D
5、23.
6、∵AD/QC=2,DQ/CP=2,∠D=∠C,
∴△ADQ∽△QCP.
7、两对,
∵∠BAC=∠BDC,∠AOB=∠DOC,
∴△AOB∽△DOC,
∴AO/BO=DO/CO,
∵∠AOD=∠BOC,
∴△AOD∽△BOC.
【1.2怎样判定三角形相似第4课时答案】
1、当AE=3时,DE=6;
当AE=16/3时,DE=8.
2-4BBA
5、△AED∽△CBD,
∵∠A=∠C,AE/CB=1/2,AD/CD=1/2.
6、∵△ADE∽△ABC,
∴∠DAE=∠BAC,
∴∠DAB=∠EAC,
∵AD/AB=AE/AC,
∴△ADB∽△AEC.
7、△ABC∽△ADE,△AEF∽△BCF,△ABD∽△ACE,
【1.2怎样判定三角形相似第5课时答案】
1、5m
2、C
3、B
4、1.5m
5、连接D₁D并延长交AB于点G,
∵△BGD∽△DMF,
∴BG/DM=GD/MF;
∵△BGD₁∽△D₁NF₁,
∴BG/D₁N=GD₁/NF₁.
设BG=x,GD=y,
则x/1.5=y/2,x/1.5=y+83.x=12
y=16,AB=BG+GA=12+3=15(m).
6、12.05m.