高一上册数学知识点复习

时间:2022-08-25 02:52:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#高一# 导语】高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。®文档大全网为各位同学整理了《高一上册数学知识点复习》,希望对您的学习有所帮助!

1.高一上册数学知识点复习


  等比数列求和公式

  (1)等比数列:a(n+1)/an=q(n∈n)。

  (2)通项公式:an=a1×q^(n-1);推广式:an=am×q^(n-m);

  (3)求和公式:sn=n×a1(q=1)sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q为公比,n为项数)

  (4)性质:

  ①若m、n、p、q∈n,且m+n=p+q,则am×an=ap×aq;

  ②在等比数列中,依次每k项之和仍成等比数列.

  ③若m、n、q∈n,且m+n=2q,则am×an=aq^2

  (5)"g是a、b的等比中项""g^2=ab(g≠0)".

  (6)在等比数列中,首项a1与公比q都不为零.注意:上述公式中an表示等比数列的第n项。

  等比数列求和公式推导:sn=a1+a2+a3+...+an(公比为q)q_sn=a1_q+a2_q+a3_q+...+an_q=a2+a3+a4+...+a(n+1)sn-q_sn=a1-a(n+1)(1-q)sn=a1-a1_q^nsn=(a1-a1_q^n)/(1-q)sn=(a1-an_q)/(1-q)sn=a1(1-q^n)/(1-q)sn=k_(1-q^n)~y=k_(1-a^x)。

2.高一上册数学知识点复习


  棱锥

  棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

  棱锥的性质:

  (1)侧棱交于一点。侧面都是三角形

  (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

  正棱锥

  正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

  正棱锥的性质:

  (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

  (2)多个特殊的直角三角形

  esp:

  a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

  b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

3.高一上册数学知识点复习


  算法的概念

  1、算法概念:

  在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.

  2.算法的特点:

  (1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.

  (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

  (3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.

  (4)不性:求解某一个问题的解法不一定是的,对于一个问题可以有不同的算法.

  (5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.

4.高一上册数学知识点复习


  函数的最值问题

  ⑴对于二次函数,利用配方法,将函数化为y=(x-a)2+b的形式,得出函数的值或最小值。

  ⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。

  ⑶关于二次函数在闭区间的最值问题

  ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。

  ⅱ若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为最小值,a

  ⅲ若二次函数的顶点不在所求区间内,则判断函数在该区间的单调性

  若函数在[a,b]上递增,则最小值为f(a),值为f(b);

  若函数在[a,b]上递减,则最小值为f(b),值为f(a)。

5.高一上册数学知识点复习


  直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  (2)直线的斜率

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

  ②过两点的直线的斜率公式:

  注意下面四点:

  (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

本文来源:https://www.wddqw.com/QnLh.html