1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与产量x的关系,则可选用( )
A.一次函数 B.二次函数
C.指数型函数 D.对数型函数
解析:选D.一次函数保持均匀的增长,不符合题意;
二次函数在对称轴的两侧有增也有降;
而指数函数是爆炸式增长,不符合“增长越来越慢”;
因此,只有对数函数最符合题意,先快速增长,后来越来越慢.
2.某种植物生长发育的数量y与时间x的关系如下表:
x 1 2 3 …
y 1 3 8 …
则下面的函数关系式中,能表达这种关系的是( )
A.y=2x-1 B.y=x2-1
C.y=2x-1 D.y=1.5x2-2.5x+2
解析:选D.画散点图或代入数值,选择拟合效果的函数,故选D.
3.如图表示一位骑自行车者和一位骑摩托车者在相距80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:
①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;
②骑自行车者是变速运动,骑摩托车者是匀速运动;
③骑摩托车者在出发了1.5小时后,追上了骑自行车者.
其中正确信息的序号是( )
A.①②③ B.①③
C.②③ D.①②
解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.
4.长为4,宽为3的矩形,当长增加x,且宽减少x2时面积,此时x=________,面积S=________.
解析:依题意得:S=(4+x)(3-x2)=-12x2+x+12
=-12(x-1)2+1212,∴当x=1时,Smax=1212.
答案:1 1212