【#初中奥数# 导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥一些。下面是®文档大全网为大家带来的八年级数学公式:立方和公式,欢迎大家阅读。
立方和公式证明
我们知道:
0次方和的求和公式ΣN^0=N+1
1次方和的求和公式ΣN^1=N(N+1)/2
2次方和的求和公式ΣN^2=N(N+1)(2N+1)/6
取公式:(X+1)^4-X^4=4*X^3+6*X^2+4*X+1
系数可由杨辉三角形来确定
那末就有:
(N+1)^4-N^4=4N^3+6N^2+4N+1....................................(1)
N^4-(N-1)^4=4(N-1)^3+6(N-1)^2+4(N-1)+1.......................(2)
(N-1)^4-(N-2)^4=4(N-2)^3+6(N-2)^2+4(N-2)+1..................(3)
...................
2^4-1^4=4×1^3+6×1^2+4×1+1...................................(n)
.
于是(1)+(2)+(3)+........+(n)有
左边=(N+1)^4-1
右边=4(1^3+2^3+3^3+......+N^3)+6(1^2+2^2+3^2+......+N^2)+4(1+2+3+......+N)+N
所以呢
把以上这已经证得的三个公式带入
4(1^3+2^3+3^3+......+N^3)+6(1^2+2^2+3^2+......+N^2)+4(1+2+3+......+N)+N=(N+1)^4-1
得4(1^3+2^3+3^3+......+N^3)+N(N+1)(2N+1)+2N(N+1)+N=N^4+4N^3+6N^2+4N
移项后得 1^3+2^3+3^3+......+N^3=1/4 (N^4+4N^3+6N^2+4N-N-2N^2-2N-2N^3-3N^2-N)
等号右侧合并同类项后得 1^3+2^3+3^3+......+N^3=1/4 (N^4+2N^3+N^2)
即
1^3+2^3+3^3+......+N^3= 1/4 [N(N+1)]^2
立方和公式推导完毕
1^3+2^3+3^3+......+N^3= 1/4 [N(N+1)]^2
正在阅读:
八年级数学公式:立方和公式05-30
天气变化观察日记200字,天气变化观察日记150字12-05
[我的童年英语作文60字带翻译]我的童年英语作文100字带翻译10-08
春游活动总结范文五篇01-25
人教版七年级上册语文练习册参考答案03-29