高二年级下册数学知识点复习

时间:2022-11-11 03:00:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
【#高二# 导语】在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。®文档大全网高二频道为你整理了《高二年级下册数学知识点复习》希望对你的学习有所帮助!

1.高二年级下册数学知识点复习


  1.不等式的定义

  在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

  2.比较两个实数的大小

  两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba

  3.不等式的性质

  (1)对称性:ab

  (2)传递性:ab,ba

  (3)可加性:aa+cb+c,ab,ca+c

  (4)可乘性:ab,cacb0,c0bd;

  (5)可乘方:a0bn(nN,n

  (6)可开方:a0

  (nN,n2).

  注意:

  一个技巧

  作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

  一种方法

  待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

2.高二年级下册数学知识点复习


  已知函数有零点(方程有根)求参数取值常用的方法

  1、直接法:

  直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

  2、分离参数法:

  先将参数分离,转化成求函数值域问题加以解决。

  3、数形结合法:

  先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

3.高二年级下册数学知识点复习


  空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.

  线线平行线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

  那么这条直线和交线平行,线面平行线线平行

  (2)平面与平面平行的判定及其性质

  两个平面平行的判定定理

  (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

  (线面平行→面面平行),

  (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.

  (线线平行→面面平行),

  (3)垂直于同一条直线的两个平面平行,

  两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)

  (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)

4.高二年级下册数学知识点复习


  总体和样本

  ①在统计学中,把研究对象的全体叫做总体。

  ②把每个研究对象叫做个体。

  ③把总体中个体的总数叫做总体容量。

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,研究,我们称它为样本.其中个体的个数称为样本容量。

  简单随机抽样

  也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随。

  机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础,高三。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  简单随机抽样常用的方法

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  ④使用统计软件直接抽取。

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  抽签法

  ①给调查对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或调查。

5.高二年级下册数学知识点复习


  有界性

  设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无XX。

  单调性

  设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。

  奇偶性

  设为一个实变量实值函数,若有f(-x)=-f(x),则f(x)为奇函数。

  几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。

  奇函数的例子有x、sin(x)、sinh(x)和erf(x)。

  设f(x)为一实变量实值函数,若有f(x)=f(-x),则f(x)为偶函数。

  几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。

  偶函数的例子有|x|、x2、cos(x)和cosh(x)。

  偶函数不可能是个双射映射。

  连续性

  在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。

6.高二年级下册数学知识点复习


  概率性质与公式

  (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

  (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果。

  贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;

  如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。

  (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。

本文来源:https://www.wddqw.com/W5hm.html