【#高二# 导语】因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。®文档大全网高二频道为你整理了《高二年级必修一数学知识点整理》,助你金榜题名!
1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);试验的全部结果所构成的区域长度(面积或体积)
3、几何概型的特点:
1)试验中所有可能出现的结果(基本事件)有无限多个;
2)每个基本事件出现的可能性相等、
4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。
等腰直角三角形面积公式
S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。
面积公式
若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:
S=ab/2。
且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:
S=ch/2=c2/4。
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。
反正弦函数的导数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。
圆的方程定义:
圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
直线和圆的位置关系:
1、直线和圆位置关系的判定方法是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。
①Δ>0,直线和圆相交、
②Δ=0,直线和圆相切、
③Δ<0,直线和圆相离。
2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。
3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。
切线的性质
⑴圆心到切线的距离等于圆的半径;
⑵过切点的半径垂直于切线;
⑶经过圆心,与切线垂直的直线必经过切点;
⑷经过切点,与切线垂直的直线必经过圆心;
当一条直线满足
(1)过圆心;
(2)过切点;
(3)垂直于切线三个性质中的两个时,第三个性质也满足。
切线的判定定理
经过半径的外端点并且垂直于这条半径的直线是圆的切线。
切线长定理
从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。
空间几何
一、立体几何常用公式
S(圆柱全面积)=2πr(r+L);
V(圆柱体积)=Sh;
S(圆锥全面积)=πr(r+L);
V(圆锥体积)=1/3Sh;
S(圆台全面积)=π(r^2+R^2+rL+RL);
V(圆台体积)=1/3[s+S+√(s+S)]h;
S(球面积)=4πR^2;
V(球体积)=4/3πR^3。
二、立体几何常用定理
(1)用一个平面去截一个球,截面是圆面。
(2)球心和截面圆心的连线垂直于截面。
(3)球心到截面的距离d与球的半径R及截面半径r有下面关系:r=√(R^2—d^2)。
(4)球面被经过球心的平面载得的圆叫做大圆,被不经过球心的载面截得的圆叫做小圆。
(5)在球面上两点之间连线的最短长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,这个弧长叫做两点间的球面距离。
直线与平面有几种位置关系
直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。
直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没有公共点。直线与平面相交和平行统称为直线在平面外。
直线与平面垂直的判定:如果直线L与平面α内的任意一直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。
线面平行:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
直线与平面的夹角范围
[0,90°]或者说是[0,π/2]这个范围。
当两条直线非垂直的相交的时候,形成了4个角,这4个角分成两组对顶角。两个锐角,两个钝角。按照规定,选择锐角的那一对对顶角作为直线和直线的夹角。
直线的方向向量m=(2,0,1),平面的法向量为n=(—1,1,2),m,n夹角为θ,cosθ=(m_n)/|m||n|,结果等于0。也就是说,l和平面法向量垂直,那么l平行于平面。l和平面夹角就为0°
正在阅读:
高二年级必修一数学知识点整理09-02
感动校园人物作文500字10-31
新人教版七年级语文上册教案:《论语》十则03-07
2016司法考试卷一《中国法制史》课后练习题(2)03-30
这可不是小事作文600字12-13
台式电脑屏幕亮度调节方法(图文)05-31
2017银行从业资格考点《个人理财》:我国婚姻法中与财产12-23
小学生作文我是一个懂事的孩子作文怎么写评语-小学生作文我是一个懂事的孩子11-10
装修公司工作计划_装修公司工作计划06-25