小升初奥数必考题型_小升初奥数发车问题的要点及解题技巧

副标题:小升初奥数发车问题的要点及解题技巧

时间:2024-08-29 09:21:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#小学奥数# 导语】经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。数学思想方法是数学知识的精髓,是分析、解决数学问题的基本原则,也是数学素养的重要内涵,它是培养学生良好思维品质的催化剂。以下是®文档大全网整理的相关资料,希望对您有所帮助。


【篇一】


  发车问题的基本解题思路

  空间理解稍显困难,证明过程对快速解题没有帮助。一旦掌握了3个基本公式,一般问题都可以迎刃而解。

  在班车里。即柳卡问题。不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

  对“发车问题”的化归与优化

  “发车”是一个有趣的数学问题。解决“发车问题”需要一定的策略和技巧。本文重点解决这样两个问题:一是在探索过程中,如何揭示“发车问题”的实质?二是在建模的过程中,如何选择最简明、最严谨和最易于学生理解并接受的方法或情景?

  为便于叙述,现将“发车问题”进行一般化处理:某人以匀速行走在一条公交车线路上,线路的起点站和终点站均每隔相等的时间发一次车。他发现从背后每隔a分钟驶过一辆公交车,而从迎面每隔b分钟就有一辆公交车驶来。问:公交车站每隔多少时间发一辆车?(假如公交车的速度不变,而且中间站停车的时间也忽略不计。)

  1、把“发车问题”化归为“和差问题”

  因为车站每隔相等的时间发一次车,所以同向的、前后的两辆公交车间的距离相等。这个相等的距离也是公交车在发车间隔时间内行驶的路程。我们把这个相等的距离假设为“1”。

  根据“同向追及”,我们知道:公交车与行人a分钟所走的路程差是1,即公交车比行人每分钟多走1/a,1/a就是公交车与行人的速度差。

  根据“相向相遇”,我们知道:公交车与行人b分钟所走的路程和是1,即公交车与行人每分钟一共走1/b,1/b就是公交车和行人的速度和。

  这样,我们把“发车问题”化归成了“和差问题”。根据“和差问题”的解法:大数=(和+差)÷2,小数=(和-差)÷2,可以很容易地求出公交车的速度是(1/a+1/b)÷2。又因为公交车在这个“间隔相等的时间”内行驶的路程是1,所以再用“路程÷速度=时间”,我们可以求出问题的答案,即公交车站发车的间隔时间是1÷【(1/a+1/b)÷2】=2÷(1/a+1/b)。

  2、把“发车问题”优化为“往返问题”

  如果这个行人在起点站停留m分钟,恰好发现车站发n辆车,那么我们就可以求出车站发车的间隔时间是m÷n分钟。但是,如果行人在这段时间内做个“往返运动”也未尝不可,那么他的“往返”决不会影响答案的准确性。

  因为从起点站走到终点站,行人用的时间不一定被a和b都整除,所以他见到的公交车辆数也不一定是整数。故此,我们不让他从起点站走到终点站再返回。那么让他走到哪再立即返回呢?或者说让他走多长时间再立即返回呢?

  取a和b的公倍数(如果是具体的数据,取最小公倍数),我们这里取ab。假如刚刚有一辆公交车在起点站发出,我们让行人从起点站开始行走,先走ab分钟,然后马上返回;这时恰好是从行人背后驶过第b辆车。当行人再用ab分钟回到起点站时,恰好又是从迎面驶来第a辆车。也就是说行人返回起点站时第(a+b)辆公交车正好从车站开出,即起点站2ab分钟开出了(a+b)辆公交车。

  这样,就相当于在2ab分钟的时间内,行人在起点站原地不动看见车站发出了(a+b)辆车。于是我们求出车站发车的间隔时间也是2ab÷(a+b)=2÷(1/a+1/b)。

  这样的往返假设也许更符合“发车问题”的情景,更简明、更严谨,也更易于学生理解和接受。如果用具体的时间代入,则会更加形象,更便于说明问题。


【篇二】


  发车问题例题

  例1:某工厂每天早晨都派小汽车接专家上班.有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?(设人和汽车都作匀速运动,他上车及调头时间不记)

  【解答】设专家从家中出发后走到M处(如图1)与小汽车相遇。由于正常接送必须从B→A→B,而现在接送是从B→M→B恰好提前10分钟;则小汽车从M→A→M刚好需10分钟;于是小汽车从M→A只需5分钟。这说明专家到M处遇到小汽车时再过5分钟,就是以前正常接送时在家的出发时间,故专家的行走时间再加上5分钟恰为比平时提前的1小时,从而专家行走了:60一5=55(分钟)。

  例2.甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?

  【解答】相遇时甲乙的行程比也是:5:4,即甲行了全程的:5/(4+5)=5/9,乙行了:4/9又相遇时甲比乙多行了:48*2=96千米所以路程是:96/(5/9-4/9)=864千米.


【篇三】


  间隔发车问题

  (1)一般间隔发车问题。用3个公式迅速作答;

  汽车间距=(汽车速度+行人速度)×相遇事件时间间隔

  汽车间距=(汽车速度-行人速度)×追及事件时间间隔

  汽车间距=汽车速度×汽车发车时间间隔

  (2)求到达目的地后相遇和追及的公共汽车的辆数。

  标准方法是:画图--尽可能多的列3个好使公式--结合s全程=v×t-结合植树问题数数。

  (3)当出现多次相遇和追及问题--柳卡

  例题解析

  【例1】某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?

  解析:这个题可以简单的找规律求解

  时间车辆

  4分钟9辆

  6分钟10辆

  8分钟9辆

  12分钟9辆

  16分钟8辆

  18分钟9辆

  20分钟8辆

  24分钟8辆

  由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。

小升初奥数发车问题的要点及解题技巧.doc

本文来源:https://www.wddqw.com/ahNu.html