[高二数学上册期中考试试卷]高二数学上册期中考试题

时间:2024-08-03 12:34:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#高二# 导语】当一切都毫无希望时,切石工人在他的头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。我希望中学生朋友们做任何事情,只要你认准了,就不要轻言放弃,因为成功就在下一步。©文档大全网高二频道为大家整理了以下文章,欢迎点评和分享~感谢你的阅读与支持!

  【一】

  1、抛物线y=4x2的焦点坐标是________.

  2.“x>0”是“x≠0”的______条件.(“充分不必要条件”、“必要不充分”、“充要条件”、“既不充分也不必要条件”).

  3、按如图所示的流程图运算,若输入x=20,则输出的k=__.

  4、某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为_的学生

  5、口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为__

  6.已知函数f(x)=f′π4cosx+sinx,则fπ4的值为_____

  7、中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为2,则双曲线方程为___________.

  8.曲线C的方程为x2m2+y2n2=1,其中m,n是将一枚骰子先后投掷两次所得点数,事件A=“方程x2m2+y2n2=1表示焦点在x轴上的椭圆”,那么P(A)=_____.

  9、下列四个结论正确的是______.(填序号)

  ①“x≠0”是“x+|x|>0”的必要不充分条件;

  ②已知a、b∈R,则“|a+b|=|a|+|b|”的充要条件是ab>0;

  ③“a>0,且Δ=b2-4ac≤0”是“一元二次不等式ax2+bx+c≥0的解集是R”的充要条件;

  ④“x≠1”是“x2≠1”的充分不必要条件.

  10.已知△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为___.

  11、已知点A(0,2),抛物线y2=2px(p>0)的焦点为F,准线为l,线段FA交抛物线于点B,过B作l的垂线,垂足为M,若AM⊥MF,则p=

  12.已知命题:“x∈R,ax2-ax-20”,如果命题是假命题,则实数a的取值范围是_____.

  13.在平面直角坐标系xOy中,椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,右顶点为A,P是椭圆上一点,l为左准线,PQ⊥l,垂足为Q.若四边形PQFA为平行四边形,则椭圆的离心率e的取值范围是________.

  14、若存在过点O(0,0)的直线l与曲线f(x)=x3-3x2+2x和y=x2+a都相切,则

  a的值是____.

  二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)

  15.(本题满分14分)

  已知双曲线过点(3,-2),且与椭圆4x2+9y2=36有相同的焦点.

  (1)求双曲线的标准方程;

  (2)求以双曲线的右准线为准线的抛物线的标准方程.

  17、(本题满分15分)

  已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).

  (1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值;

  (2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.

  18、(本题满分15分)

  中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=213,椭圆的长半轴与双曲线半实轴之差为4,离心率之比为3∶7.

  (1)求这两曲线方程;

  (2)若P为这两曲线的一个交点,求cos∠F1PF2的值.

  19、(本题满分16分)

  设a∈{2,4},b∈{1,3},函数f(x)=12ax2+bx+1.

  (1)求f(x)在区间(-∞,-1]上是减函数的概率;

  (2)从f(x)中随机抽取两个,求它们在(1,f(1))处的切线互相平行的概率.

  20、(本题满分16分)

  如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别是A1,A2,上、下顶点分别为B2,B1,点P35a,m(m>0)是椭圆C上一点,PO⊥A2B2,直线PO分别交A1B1,A2B2于点M,N.

  (1)求椭圆的离心率;

  (2)若MN=4217,求椭圆C的方程;

  (3)在第(2)问条件下,求点Q()与椭圆C上任意一点T的距离d的最小值.

  【答案】

  一、填空题本大题共14小题,每小题5分,共计70分.请把答案直接填写在答题卡相应位置上.

  1、抛物线y=4x2的焦点坐标是__.(0,116)______

  2.“x>0”是“x≠0”的____充分不必要____条件.(“充分不必要条件”、“必要不充分”、“充要条件”、“既不充分也不必要条件”).

  3、按如图所示的流程图运算,若输入x=20,则输出的k=_3__.

  4、某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为_37__的学生

  5、口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为__1/3__

  6.已知函数f(x)=f′π4cosx+sinx,则fπ4的值为__1_____

  7、中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为2,则双曲线方程为___x2-y2=2_____________.

  8.曲线C的方程为x2m2+y2n2=1,其中m,n是将一枚骰子先后投掷两次所得点数,事件A=“方程x2m2+y2n2=1表示焦点在x轴上的椭圆”,那么P(A)=___512__.

  9、下列四个结论正确的是__①③______.(填序号)

  ①“x≠0”是“x+|x|>0”的必要不充分条件;

  ②已知a、b∈R,则“|a+b|=|a|+|b|”的充要条件是ab>0;

  ③“a>0,且Δ=b2-4ac≤0”是“一元二次不等式ax2+bx+c≥0的解集是R”的充要条件;

  ④“x≠1”是“x2≠1”的充分不必要条件.

  10.已知△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为__12___.

  11、已知点A(0,2),抛物线y2=2px(p>0)的焦点为F,准线为l,线段FA交抛物线于点B,过B作l的垂线,垂足为M,若AM⊥MF,则p=___2

  12.已知命题:“x∈R,ax2-ax-20”,如果命题是假命题,则实数a的取值范围是___(-8,0]_____.

  13.在平面直角坐标系xOy中,椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,右顶点为A,P是椭圆上一点,l为左准线,PQ⊥l,垂足为Q.若四边形PQFA为平行四边形,则椭圆的离心率e的取值范围是___(2-1,1)_____.

  14、若存在过点O(0,0)的直线l与曲线f(x)=x3-3x2+2x和y=x2+a都相切,则a的值是____1或____.

  二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)

  16.(本题满分14分)

  已知命题:函数y=loga(x+1)在(0,+∞)内单调递减;命题:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.为真,为假,求a的取值范围.

  解:当p为真时:0

  当q为真时:a>5/2或a<1/2---------------------------------------------8分

  有题意知:p,q一真一假-----------------------------------------------10分

  ------------------------------------------------14分

  17、(本题满分15分)

  已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).

  (1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值;

  (2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.

  解f′(x)=3x2+2(1-a)x-a(a+2).

  (1)由题意得f0=b=0,f′0=-aa+2=-3,---------------------------------4分

  解得b=0,a=-3或1.---------------------------------------------------------------------4分

  (2)∵曲线y=f(x)存在两条垂直于y轴的切线,

  ∴关于x的方程f′(x)=3x2+2(1-a)x-a(a+2)=0有两个不相等的实数根,--------10分

  ∴Δ=4(1-a)2+12a(a+2)>0,即4a2+4a+1>0,

  ∴a≠-12.

  ∴a的取值范围是-∞,-12∪-12,+∞.---------------------------------15分

  18、(本题满分15分)

  中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=213,椭圆的长半轴与双曲线半实轴之差为4,离心率之比为3∶7.

  (1)求这两曲线方程;

  (2)若P为这两曲线的一个交点,求cos∠F1PF2的值.

  解(1)由已知:c=13,设椭圆长、短半轴长分别为a,b,双曲线半实、虚轴长分别为m,n,

  则a-m=4,7•13a=3•13m.解得a=7,m=3.∴b=6,n=2.

  ∴椭圆方程为x249+y236=1,---------------------------------------------------------------------4分

  双曲线方程为x29-y24=1.------------------------------------------------------------------------8分

  (2)不妨设F1,F2分别为左、右焦点,P是第一象限的一个交点,则|PF1|+|PF2|=14,|PF1|-|PF2|=6,

  所以|PF1|=10,|PF2|=4.又|F1F2|=213,

  ∴cos∠F1PF2=|PF1|2+|PF2|2-|F1F2|22|PF1|•|PF2|=102+42-21322×10×4=45.----------------------------15分

  19、(本题满分16分)

  设a∈{2,4},b∈{1,3},函数f(x)=12ax2+bx+1.

  (1)求f(x)在区间(-∞,-1]上是减函数的概率;

  (2)从f(x)中随机抽取两个,求它们在(1,f(1))处的切线互相平行的概率.

  解:(1)f(x)共有四种等可能基本事件即(a,b)取(2,1)(2,3)(4,1)(4,3)

  记事件A为“f(x)在区间(-∞,-1]上是减函数”

  有条件知f(x)开口一定向上,对称轴为x=

  所以事件A共有三种(2,1)(4,1)(4,3)等可能基本事件

  则P(A)=34.

  所以f(x)在区间(-∞,-1]上是减函数的概率为34.-------------------8分

  (2)由(1)可知,函数f(x)共有4种可能,从中随机抽取两个,有6种抽法.

  ∵函数f(x)在(1,f(1))处的切线的斜率为f′(1)=a+b,

  ∴这两个函数中的a与b之和应该相等,而只有(2,3),(4,1)这1组满足,

  ∴概率为16.----------------------------------------------------16分

  20、(本题满分16分)

  如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别是A1,A2,上、下顶点分别为B2,B1,点P35a,m(m>0)是椭圆C上一点,PO⊥A2B2,直线PO分别交A1B1,A2B2于点M,N.

  (1)求椭圆的离心率;

  (2)若MN=4217,求椭圆C的方程;

  (3)在第(2)问条件下,求点Q()与椭圆C上任意一点T的距离d的最小值.

  解:(1)由题意P3a5,4b5,kA2B2•kOP=-1,

  所以4b2=3a2=4(a2-c2),所以a2=4c2,所以e=12.①---------------5分

  (2)因为MN=4217=21a2+1b2,

  所以a2+b2a2b2=712②

  由①②得a2=4,b2=3,所以椭圆C的方程为x24+y23=1.--------------------10分

  (3)

  因为,所以当时TQ最小为-----------------------------16分

  【二】

  一、选择题(共10小题)

  1、某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A类学校中的学生甲被抽到的概率为()

  A.B.C.D.

  2、设,则的值为()

  A.0B.—1C.1D.

  3、对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(xn,yn),则下列说法中不正确的是()

  A.由样本数据得到的回归方程=x+*样本中心(,)

  B.残差平方和越小的模型,拟合的效果越好

  C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好

  D.若变量y和x之间的相关系数为r=﹣0.9362,则变量y和x之间具有线性相关关系

  4、在区域内任取一点P,则点P落在单位圆x2+y2=1内的概率为()

  A.B.C.D.

  5、某校高二年级有8个班,现有6名学生,分配到其中两个班,每班3人,共有种()方法。

  A.280B.560C.1120D.3360

  6、把一枚硬币任意抛掷三次,事件A=“至少一次出现反面”,事件B=“恰有一次出现正面”,则

  P(B|A)=()

  A.B.C.D.

  7、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程()

  零件数x个1020304050

  加工时间y(min)62758189

  表中有一个数据模糊不清,请你推断出该数据的值为()

  A.68B.68.2

  C.69D.75

  8、执行如图所示的程序框图后,输出的值为4,则P的取

  值范围是()

  A.B.

  C.D.

  9、若x∈A,且,则称A是“伙伴关系集合”.在集合的所有非空子集中任选一个集合,则该集合是“伙伴关系集合”的概率为()

  A.B.C.D.

  10.在数1,2,3,4,5的排列a1,a2,a3,a4,a5中,满足a1<a2,a2>a3,a3<a4,a4>a5的排列出现的概率为()

  A.B.C.D.

  二、填空题(共5小题)

  11、若展开式中的所有二项式系数和为512,则该展开式中的常数项为____.

  12、设随机变量ξ~N(0,1),若P(ξ>1)=p,则P(﹣1<ξ<0)=_________.

  13、随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则p等于_________.

  14、将7个市三好学生名额分配给5个不同的学校,其中甲、乙两校至少各有两个名额,则不同的分配方案种数有_________.

  15、一支足球队每场比赛获胜(得3分)的概率为a,与对手踢平(得1分)的概率为b,负于对手(得0分)的概率为c(a,b,c∈(0,1)),已知该足球队进行一场比赛得分的期望是1,则的最小值为____.

  三、解答题(共6小题)

  16、(本题12分)用一颗骰子连掷三次,投掷出的数字顺次排成一个三位数,此时:

  (1)各位数字互不相同的三位数有多少个?

  (2)可以排出多少个不同的数?

  (3)恰好有两个相同数字的三位数共有多少个?

  17、(本题12分)已知的展开式中前三项的系数成等差数列.

  (1)求n的值;

  (2)求展开式中系数的项.

  18、(本题12分)某校在一次趣味运动会的颁奖仪式上,高一高二高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.

  (1)求n的值;

  (2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.

  (3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.

  19、(本题12分)某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.

  (1)求分数在[70,80)内的频率,并补全这个频率分布直方图;

  (2)从频率分布直方图中,估计本次考试的平均分;

  (3)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.

  20、(本题13分)已知某种植物种子每粒成功发芽的概率都为,某植物研究所进行该种子的发芽实验,每次实验种一粒种子,每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值;

  (1)求随机变量ξ的数学期望;

  (2)记“关于x的不等式ξx2﹣ξx+1>0的解集是实数集R”为事件A,求事件A发生的概率P(A).

  21、(本题14分)已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4,半径小于5.

  (1)求直线PQ与圆C的方程;

  (2)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.

高二数学上册期中考试题.doc

本文来源:https://www.wddqw.com/akh5.html