圆锥体表面积公式的推导 在上《圆柱与圆锥》这单元中的圆锥时,蔡老师运用实物教学向我们详细地介绍了圆锥的特点。之后蔡老师问了一句:“你们还想知道有关圆锥的哪些内容呢?” “表面积!” “体积!”看来大多数同学竟和我的想法一样,真是英雄所见略同啊! “圆锥的表面积等你们到初三再学,现在我们来看体积。”蔡老师只满足了我们的一个愿望。 “唉!为什么还要等三年呀!”见大家都无精打采了,蔡老师解释说“求圆锥体的表面积得用上母线l以及扇形圆心角的度数,这些对你们来说太深奥了,有兴趣的同学可以自己试着推算,遇到不懂的到办公室找我。” 我的兴趣被蔡老师的解释彻底吊起来了,好,非得把这难题攻克!回到家里,我苦思冥想,在多次检验之后,我终于推导出圆锥的表面积公式。推导过程如下: 如果用r来表示底面半径,l表示圆锥的母线,n°表示圆锥侧面扇形的圆心角的度数,则底面周长为2πr,所以扇形的弧线长度也为2πr,而弧线长度(扇形所占圆周长)就等于n°/360°.扇形所占圆是以以母线l为半径的,所以它的周长为2πr,得出 n/360 = 2πr/2πl = r/l r/ l就是弧线长度与扇形所占圆周长之比,也就是扇形与扇形所占圆的面积之比。所以,只需求出扇形所占圆的面积再乘以r/l便可以得出扇形的面积。而扇形所占圆的面积为πl2,即可得出: S侧 = πl2×r/l = πrl 向前再推一步,又得出扇形面积的计算公式: S侧 =πrl =1/2×2πr×l = 1/2×底面弧线长× 母线长 由此推导出圆锥侧面扇形面积等于πrl ,等于3.14乘以底面半径再乘以母线即可。圆锥的表面积为侧面积加底面积,又为: S表 = S侧+S底 =πrl+πr2 =πrl+πr×r =πr(l+r) 由此得出圆锥表面积计算公式。这样,在制作圆锥时可以根据底面圆来确定侧面扇形圆心角的度数,也可以不剪开一个圆锥就知道它的表面积了。 中学数学教材中知识点的抽象性和隐含性比其它学科显得更为突出.数学中的知识点要通过想象思维和逻辑推理才能揭示,由于学生受思维和推理能力的限制,以及没有阅读数学课本的习惯,许多学生对数学教材看不懂,不理解.为了完成中学数学的教学目的和任务,首先教师要认真钻研和熟悉教材,把蕴藏在教材中那些隐含的知识点挖掘出来,帮助学生理解教材和掌握教材,以培养学生的研究能力. 本文来源:https://www.wddqw.com/doc/0550246bcaaedd3383c4d3e5.html