好胜心

时间:2022-04-14 09:36:13 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。


“好胜心”还是“好奇心”

现代数学教育思想告诉我们:学数学就是“做数学”,“做数学”的特征就是让每一个学生都参与数学,即一定程度上积极地参与发现工作,并在很大程度上是通过猜测来实现的,这就需要学生具有强烈的探索愿望、不懈的探索精神和一定的探索能力。究竟“好胜心”和“好奇心”哪个更能激起学生的探索热情、养成学生的探索习惯、培养学生的探索能力呢?我认为显然是后者。

几千年的儒家文化鼓励读书人“为今生今世建功立业而奋斗”,读书的目的很明确,有兴趣要读,没有兴趣也要读,形成追求“现世功业”的考试文化。于是,“争高分”促进了“好胜心”的发展。在数学学习中,“好胜心”教人一味地去追求分数,使人满足于老师教的现成数学,这种数学是由数学家事先组合好的,只有数学家们才知道每个部分如何配合,每一部分的用处又是什么,但学生却不懂这些秘密的知识,因而对学生而言,所获得的只是“一堆毫无意义的孤立的砖块”,根本不了解“这些分析的砖块最终究竟要建造成什么样的大厦”,但这些“孤立的砖块”可以帮助学生得高分,获得的“砖块”越多,越能满足其“好胜心”。但这样又怎能培养孩子们追求真理的探索意识和创新精神呢?

而“好奇心”则让学生学会思考,养成爱动脑筋、主动思索的好习惯,凡事都要想一想“为什么?”、“后来呢?”,这样正可以培养其探索真理的意识和情感,更能发展其创新精神和能力。

举一个例子来说明:下列是某月的月历:

6 13 20 27

7 14 21 28

1 8 15

2 9 16

3 10 17 24 31

4 11 18 25

5 12 19 26

22 23 29

30

提问:阴影方框中的9个数之和与该方框正中间的数有什么关系?

学生立即会计算,结果表明这9数之和是正中间的数159倍。

再问若将阴影方框移至如下图,又如何?

6 13 20 27

7 14 21 28

1 8 15 22 29

2 9 16 23 30

3 10 17 24 31

4 11 18 25

5 12 19 26

通过计算,学生会得出相同的结论,于是,他们就会好奇地猜想:这种关系对其它方框也成立吗?“好奇心”会驱使他们去尝试用代数方法进行证明:设中间的数为a,则阴影方框中的9个数分别为:


a-8 a-1 a+6

a-7 a a+7

a-6 a+1 a+8

求出此9数之和为:(a-8+a-7+a-6+a-1+a+a+1+a+6+a+7+a+8=9a

正好就是正中间的数a9倍!“好奇心”进一步驱使他们思考:这种关系对任何一个月的月历都成立吗?答案是肯定的!同时,“好奇心”继续推动他们进一步猜想:如果阴影方框里的数是4个,是否又有什么规律可言呢?16个呢?25个(将月历31后面的数继续下去)呢?等等。当他们分别得出结论以后,会惊喜地发现:奇、偶数得出不同的规律!奇数时,几个数之和就是中间数的几倍;偶数时,对角线上的数之和相等。通过思考,还会发现一些其它规律。再推而广之,若将此表每行7数(第一行可少)无限列下去,此规律是否都满足呢?若由每行7数改成每行5个、6个、8个、9个……是否又有什么规律可寻呢?“好奇心”促使同学们不断地探究下去,不断地深入,不断地发现,不断地创新!

新加坡在教育上的口号是:“会思考的学校,爱学习的国家”,所谓“会思考”,即是自己发现问题,然后主动去积极思考问题,力求自己解决问题。“好奇心”正能使人做到这一点!而“好胜心”只能使人去思考别人提出的问题,这种思考具有一定的被动性,很难创新;只有“好奇心”才能催人积极主动地去思维、去发现、去创造,长此以往,何愁没有创新。




本文来源:https://www.wddqw.com/doc/06379dd3b81aa8114431b90d6c85ec3a86c28b93.html