幂函数的定义域和值域

时间:2023-11-19 20:12:24 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
幂函数的定义域和值域

幂函数的定义域和值域:当mn都为奇数,k为偶数时,定义域、值域均为R;当mn都为奇数,k为奇数时,定义域、值域均为{x∈R|x≠0}。

定义域和值域

幂函数的一般形式是y=x^α,其中,a可为任何常数,但中学阶段仅研究a为有理数的情形(a为无理数时,定义域为(0,+∞) ),这时可表示为,其中m,n,k∈N*,且mn互质。特别,当n=1时为整数指数幂。

1)当mn都为奇数,k为偶数时,定义域、值域均为R,为奇函数;

2)当mn都为奇数,k为奇数时,定义域、值域均为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),为奇函数;

3)当m为奇数,n为偶数,k为偶数时,定义域、值域均为[0,+∞),为非奇非偶函数;

4)当m为奇数,n为偶数,k为奇数时,定义域、值域均为(0,+∞),为非奇非偶函数;

5)当m为偶数,n为奇数,k为偶数时,定义域为R、值域为[0,+∞),为偶函数; 6)当m为偶数,n为奇数,k为奇数时,定义域为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),值域为(0,+∞),为偶函数。 幂函数的定义域

形如y=x^a(a为常数)的函数,称为幂函数。

如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,且p/q为既约分数(即pq互质),qp都是整数,则x^(p/q)=q次根号(xp次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:


排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x<0x>0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。 x大于0时,函数的值域总是大于0的实数。

x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,必须指出的是,当x<0时,幂函数存在一个相当棘手的内在矛盾:[x^(a/b)]^(c/d)[x^(c/d)]^(a/b)x^(ac/bd)这三者相等吗?若p/qac/bd的既约分数,x^(ac/bd)x^(p/q)以及x^(kp/kq)k为正整数)又能相等吗?也就是说,在x<0时,幂函数值的唯一性与幂指数的运算法则发生不可调和的冲突。对此,现在有两种观点:一种坚持通过约定既约分数来处理这一矛盾,能很好解决幂函数值的唯一性问题,但幂指数的运算法则较难维系;另一种观点则认为,直接取消x<0这种情况,即规定幂函数的定义域为[0,+∞)或(0,+∞)。看来这一问题有待专家学者们认真讨论后予以解决。

您的阅读,祝您生活愉快。


本文来源:https://www.wddqw.com/doc/068178c70522192e453610661ed9ad51f11d5427.html