上海高考数学大题解题技巧 一、立体几何题 1.证明线面位置关系,一般不需要去建系,更简单; 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 二、三角函数题 注意归一公式、二倍角公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!),正弦定理,余弦定理的应用。 三、函数(极值、最值、不等式恒成立(或逆用求参)问题) 1.先求函数的定义域,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 2.注意最后一问有应用前面结论的意识; 3.注意分论讨论的思想; 4.不等式问题有构造函数的意识; 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法); 四、圆锥曲线问题 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法; 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等; 3.战术上整体思路要保10分,争12分,想16分。 五、数列题 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用数列的单调性(或者放缩法);如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3.如果是新定义型,一定要严格的套定义做题(仔细理解新定义)。 4.战术上整体思路要保10分,争12分,想16分。 1 附:5种数学答题思路 另外,在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。以下总结高考数学五大解题思想,帮助同学们更好地提分。 1.函数与方程思想 函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。 2.数形结合思想 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。 3.特殊与一般的思想 用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。 4.极限思想解题步骤 极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。 5.分类讨论思想 同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。 2 本文来源:https://www.wddqw.com/doc/0b50817382c4bb4cf7ec4afe04a1b0717ed5b36e.html