安徽省淮南市大通区(东部地区)重点名校2022届中考数学适应性模拟试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.估计8-1的值在( ) A.0到1之间 【答案】B 【解析】 试题分析:∵2<8<3, ∴1<8-1<2, 即8-1在1到2之间, 故选B. 考点:估算无理数的大小. 2.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数内的图象经过点A,与BC交于点F,删△AOF的面积等于( ) 在第一象限B.1到2之间 C.2到3之间 D.3至4之间 A.10 B.9 C.8 D.6 【答案】A 【解析】 过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论. 解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示. 设OA=a,BF=b, 在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=, ∴AM=OA•sin∠AOB=a,OM==a, ∴点A的坐标为(a, a). ∵点A在反比例函数y=的图象上, ∴a×a=a2=12, 解得:a=5,或a=﹣5(舍去). ∴AM=8,OM=1. ∵四边形OACB是菱形, ∴OA=OB=10,BC∥OA, ∴∠FBN=∠AOB. 在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°, ∴FN=BF•sin∠FBN=b,BN==b, ∴点F的坐标为(10+b,b). ∵点F在反比例函数y=的图象上, ∴(10+b)×b=12, S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10 故选A. “点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA. 3.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( ) A.2个 【答案】C 【解析】 【分析】 【详解】 B.3个 C.4个 D.5个 试题分析:∵在矩形ABCD中,AE平分∠BAD, ∴∠BAE=∠DAE=45°, ∴△ABE是等腰直角三角形, ∴AE=2AB, ∵AD=2AB, ∴AE=AD, 又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS), ∴BE=DH, ∴AB=BE=AH=HD, 本文来源:https://www.wddqw.com/doc/2a39adc153e2524de518964bcf84b9d528ea2c13.html