《数轴》教案 教学目标 1.理解数轴、相反数的概念; 2.掌握数轴的画法、数轴上的点与有理数的关系; 3.会用数轴上的点表示相反数,探索他们的位置关系; 4.感受数形结合与转化. 教学重点和难点 重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数. 难点:正确理解有理数与数轴上点的对应关系. 教学手段 现代课堂教学手段. 教学方法 启发式教. 教学过程 (一)从学生原有认知结构提出问题 1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗? 2.用“射线”能不能表示有理数?为什么? 3.你认为把“射线”做怎样的改动,才能用来表示有理数呢? 待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴. (二)讲授新课 让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃. 与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画): 1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃); 2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负); 3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,… 提问:我们能不能用这条直线表示任何有理数?(可列举几个数) 在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴. 进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢? 通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可. (三)运用举例 变式练习 例1指出数轴上A,B,C,D,E各点分别表示什么数. O1 例2画一个数轴,并在数轴上画出表示下列各数的点: (1)0.5,-55,0,-0.5,-4,,1.4; 2255与,-22(2)200,-150,-50,100,-100. 想一想:-4与4有什么相同和不同之处?它们在数轴上的位置有什么关系?-0.5与0.5呢? (四)介绍相反数的概念和性质. 如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.比如,-到相反数性质: 在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等. 例如,表示-100和100的点分别位于原点的左侧和右侧,到原点的距离都是100个单位长度. 例:求5,0,-课堂练习 见课本第113页 最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示. (四)小结 指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法. 本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有55的相反数是,4是-4的相反数.注意,零的相反数是零.观察归纳得229的相反数,并把这些数及其相反数表示在数轴. 2的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究. 本文来源:https://www.wddqw.com/doc/4f556218dbef5ef7ba0d4a7302768e9950e76e60.html