苏教版高一数学必修一知识点归纳总结 【一】 一、集合及其表示 1、集合的含义: “集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。 所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。 2、集合的表示 通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作dA。 有一些特殊的集合需要记忆: 非负整数集(即自然数集)N正整数集N*或N+ 整数集Z有理数集Q实数集R 集合的表示方法:列举法与描述法。 ①列举法:{a,b,c……} ②描述法:将集合中的元素的公共属性描述出来。如{xR|x-3>2},{x|x-3>2},{(x,y)|y=x2+1} ③语言描述法:例:{不是直角三角形的三角形} 例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2} 强调:描述法表示集合应注意集合的代表元素 A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。 3、集合的三个特性 (1)无序性 指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。 例题:集合A={1,2},B={a,b},若A=B,求a、b的值。 解:,A=B 注意:该题有两组解。 (2)互异性 指集合中的元素不能重复,A={2,2}只能表示为{2} (3)确定性 集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。 二、集合间的基本关系 1.子集,A包含于B,记为:,有两种可能 (1)A是B的一部分, (2)A与B是同一集合,A=B,A、B两集合中元素都相同。 反之:集合A不包含于集合B,记作。 如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,,B=C。A是C的子集,同时A也是C的真子集。 2.真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA) 3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的子集。 4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。 例:集合共有个子集。(13年高考第4题,简单) 练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。 解析: 集合A有3个元素,所以有23=8个子集。分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。 集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。 此处这么罗嗦主要是为了让同学们注意写的顺序,数学就是要讲究严谨性和逻辑性的。一定要养成自己的逻辑习惯。如果就是为了提高计算能力倒不如直接去菜场卖菜算了,绝对能飞速提高的,那学数学也没什么必要了。 三、交集、并集、补集 这个是高考的重点,但是一般题目较简单。 1.交集: 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}. 如集合A={1,2,3},集合B={2,3,4},则A∩B={2,3}。 例:已知集合则(11年高考第1题,简单) 练习: (2014北京)已知集合,则() 答案:C 解析:,所以{0,2} 2、并集 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∈B(读作"A并B"),即A∈B={x|x∈A,或x∈B}. 如集合A={1,2,3},集合B={2,3,4},则A∈B={1,2,3,4}. 例:已知集合,,则.(12年高考第1题,简单) 答案:{1,2,4,6} 3、全集与补集 (1)补集:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作:CSA即CSA={xxS且xA} (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。 【二】 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等” 即:①任何一个集合是它本身的子集。AA ②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA) ③如果AB,BC,那么AC ④如果AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集 【三】 知识点1.集合与元素 一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的 知识点2.解集合问题的关键 解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合,比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等 本文来源:https://www.wddqw.com/doc/723fcf0b846a561252d380eb6294dd88d0d23dab.html