初中数学新课程标准

时间:2022-12-29 05:06:13 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
一、数与代数

在本学段中,学生将学习实数、整式和分式、方程和方程组、不等式和不等式组、函数等知识,探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交流数量关系以及变化规律的工具,发展符号感,体会数学与现实生活的紧密联系,增强应用意识,提高运用代数知识与方法解决问题的能力。

在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强方程、不等式、函数等内容的联系,介绍有关代数内容的几何背景;应避免繁琐的运算。 (一)具体目标

1.数与式 (1)有理数

①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。 ③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。 ④理解有理数的运算律,并能运用运算律简化运算. ⑤能运用有理数的运算解决简单的问题。

⑥能对含有较大数字的信息作出合理的解释和推断.[参见例1] 2)实数

①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。

②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。

③了解无理数和实数的概念,知道实数与数轴上的点一一对应。 ④能用有理数估计一个无理数的大致范围。[参见例2

⑤了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.

⑥了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化)。

(3)代数式①在现实情境中进一步理解用字母表示数的意义。 ②能分析简单问题的数量关系,并用代数式表示。[参见例3与例4] ③能解释一些简单代数式的实际背景或几何意义。[参见例5

④会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。 4)整式与分式

①了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示).

②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。

③会推导乘法公式:(ab)ab= a2b2;ab)2 = a22ab b2,了解公式的几何背景,并能进行简单计算.



④会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。

⑤了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.[参见6

2.方程与不等式 1)方程与方程组

①能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型.


②经历用观察、画图或计算器等手段估计方程解的过程。[参见例7]

③会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两).

④理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。 ⑤能根据具体问题的实际意义,检验结果是否合理. 2)不等式与不等式组

①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。②会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。 ③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。 3.函数

(1)探索具体问题中的数量关系和变化规律[参见例8]2)函数 ①通过简单实例,了解常量、变量的意义。

②能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。 ③能结合图像对简单实际问题中的函数关系进行分析。[参见例9

④能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。 ⑤能用适当的函数表示法刻画某些实际问题中变量之间的关系.[参见例10] ⑥结合对函数关系的分析,尝试对变量的变化规律进行初步预测.[参见例11 3)一次函数

①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.

②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k0k0时,图象的变化情况=。 ③理解正比例函数.

④能根据一次函数的图象求二元一次方程组的近似解. ⑤能用一次函数解决实际问题。 (4)反比例函数

①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。 ②能画出反比例函数的图象,根据图象的变化)。

③能用反比例函数解决某些实际问题。 (5)二次函数

①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义. ②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。 ④会利用二次函数的图象求一元二次方程的近似解.

图象和解析表达式y=kx(k≠0 )探索并理解其性质(k0k0时,






本文来源:https://www.wddqw.com/doc/815d12ff866a561252d380eb6294dd88d0d23dc0.html