函数及其表示的教案 函数及其表示的教案范文 重点难点教学: 1.正确理解映射的概念; 2.函数相等的两个条件; 3.求函数的定义域和值域。 一.教学过程: 1.使学生熟练掌握函数的概念和映射的定义; 2.使学生能够根据已知条件求出函数的定义域和值域;3.使学生掌握函数的三种表示方法。 二.教学内容:1.函数的定义 设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的'任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B的一个函数(function),记作: (),yfxxA 其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。显然,值域是集合B的子集。 注意: ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x. 2.构成函数的三要素定义域、对应关系和值域。 3、映射的定义 设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意 一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 4.区间及写法: 设a、b是两个实数,且a (1)满足不等式axb的实数x的集合叫做闭区间,表示为[a,b]; (2)满足不等式axb的实数x的集合叫做开区间,表示为(a,b); 5.函数的三种表示方法①解析法②列表法③图像法 本文来源:https://www.wddqw.com/doc/8776b796cd84b9d528ea81c758f5f61fb636281a.html