六年级数学常用面积公式 正方形:S=a^2{正方形面积=边长×边长} 平行四边形:S=ah{平行四边形面积=底×高} 三角形:S=ah÷2{三角形面积=底×高÷2} 梯形:S=(a+b)×h÷2{梯形面积=(上底+下底)×高÷2} 圆形(正圆):S=πr^2{圆形(正圆)面积=圆周率×半径×半径} 圆环:S=(R^2-r^2)×π{圆形(外环)面积={圆周率×(外环半径^2-内环半径^2)} 扇形:S=πr^2×n/360{圆形(扇形)面积=圆周率×半径×半径×扇形角度/360} 长方体表面积:S=2(ab+ac+bc){长方体表面积=(长×宽+长×高+宽×高)×2} 正方体表面积:S=6a^2{正方体表面积=棱长×棱长×6} 球体(正球)表面积:S=4πr^2{球体(正球)表面积=圆周率×半径×半径×4} 椭圆 S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长). 半圆 半圆形的面积公式=圆周率×半径的平方÷2 用字母公式表示是:S半=Πr^2÷2 周长公式:初中周长公式常见的有以下几类: 长方形周长=(长+宽)×2 ,C=2(a+b) 正方形周长=边长×4,C=4a 圆周长=直径×圆周率 ,C=2πr 面积公式:初中几何面积公式常见的有以下几类: 长方形面积=长×宽 ,S=ab 正方形面积=边长×边长 , S=a²三角形面积=底×高÷2 , 1 / 2 S=ah/2平行四边形面积=底×高 , S=ah 梯形面积=(上底+下底)×高÷2 , S=1/2(a+b)h 圆形面积=半径×半径×圆周率 , S=πr扇形面积=半径×半径×圆周率×圆心角度数(n)÷360 ,S=nπr²/360 一次函数公式:一次函数为直线,表达式有以下几种点斜式:y-b=k(x-a);已知斜率k以及过点(a,b)两点式:(y-b)/(x-a)=(b-d)/(a-c);已知两点(a,b),(c,d)斜率为(b-d)/(a-c)斜截式:y=kx+b;已知斜率k,y轴截距为b即过点(0,b)根据点斜式截距式:x/a+y/b=1;已知x,y轴截距分别为a,b即过两点(a,0),(0,b)根据两点式 4/6 二次函数表达式 :二次函数为抛物线,表达式有以下三种。一般式:y=ax²+bx+c;(a≠0) 顶点式:y=a(x-h)²+k; [a≠0定点(h,k)] 交点式:y=a(x-x1)(x-x2);[抛物线与x轴交于(x1,0)(x2,0)] 5/6 二次函数图像:二次函数表达式y=ax²+bx+c;二次函数是轴对称图形。二次项系数a决定开口方向(a>0,开口向上;a<0,开口向下) 对称轴:x = -b/2a顶点坐标:[ -b/2a,(4ac-b²)/4a ]Δ=b²-4ac;抛物线与x轴交点个数(Δ>0时,2个交点;Δ=0时,1个交点;Δ<0时,没有交点) 6/6 一元二次方程求解公式:二次函数表达式ax²+bx+c=0;(a≠0),一元二次方程可以参考二次函数进行变形。求解一元二次方程,我们可以先做出抛物线,然后看与x轴交点。△=b²-4ac;求解公式:x=(-b±V△)/2a; 2 / 2 本文来源:https://www.wddqw.com/doc/8b825bf72f3f5727a5e9856a561252d381eb203e.html