全品作业本数学7年级下沪科版(HK)-1

时间:2022-05-23 14:10:02 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
6 实数 61 平方根、立方根

1.平方根 1课时 平方根

知识要点分类练

1.“36的平方根是±6”,用数学式子表示为( ) A366 B366 C366 D366 【答案】B

29的平方根是( ) A.±3 B

1

C3 D.-3 3

【答案】A

3.若某正数的一个平方根是-5,则它的另一个平方根是________ 【答案】5

4.求下列各数的平方根: (1)81 (2) (3)2

16 25

1

(4)0.49 4

【答案】(1)81的平方根是±9

416

的平方根是

525

13(3)2的平方根是

42

(2)

(4)0.49的平方根是±0.7

5.下列各数没有平方根的是( )

A0 B|4| C.-4 D.-(25) 【答案】C

6.下列说法正确的是( ) A.任何数的平方根都有两个 B.只有正数才有平方根 C.负数的平方根是负数

D.一个非负数的平方根的平方就是它本身 【答案】D

7.平方根等于它本身的数是( ) A.-1 B1 C0 D.±1 【答案】C

8.若mn是同一个数的平方根,且mn,则(mn)

2016

________


【答案】0

规律方法综合练

9.求下列各式中的x (1)4x25 (2)(x1)36 【答案】(1)x

2

2

55x 22

(2)x5x=-7

10.已知x1的平方根是±23xy1的平方根是±4,求3x5y的平方根. 【答案】解:由x1的平方根是±23xy1的平方根是±4,得

x14,

解得

3xy116,

x5,



y2.

所以3x5y151025

因为25的平方根为±5,所以3x5y的平方根为±5 拓广探究创新练

11.若a的两个平方根是方程3x2y2的一组解. (1)a的值; (2)a的平方根.

【答案】解:(1)因为a的两个平方根是方程3x2y2的一组解, 所以xy0,联立

2

2

3x2y2,x2,

解得

xy0,y2.

所以ax24 (2)a42

2课时 算术平方根

知识要点分类练



19的算术平方根是( )

A.-3 B.±3 C3 C9 【答案】C 24的值是( )

A4 B2 C.-2 D.±2 【答案】B

3.下列说法错误的是( ) A10(10)的算术平方根

2


B0.10.01的算术平方根 C.-|7|没有算术平方根

D.如果一个数的算术平方根等于它本身,那么这个数是0 【答案】D

4.求下列各数的算术平方根: (1)196 (2)

92

(3)(6) 25

【答案】(1)196的算术平方根是14 (2)

39

的算术平方根是

525

2

(3)(6)的算术平方根是6



5.用计算器求2016的算术平方根时,下列四个键中,必须按的键是( ) A B C【答案】C

6.用计算器求3.14的值的按键顺序是________ 【答案】

D

314



7.若高为2、底面为正方形的长方体的体积为32,则该长方体的底面边长为( ) A1 B2 C4 D8 【答案】C

8.若一块正方形地砖的面积为0.25平方米,则它的边长是________米. 规律方法综合练 【答案】0.5

981的算术平方根是( )

A.±3 B3 C.±9 D9 【答案】B

10.一个数的算术平方根为a,比这个数大2的数是( ) Aa2 Ba2

2

Ca2 Da2

【答案】D

11.用长为3cm、宽为2.5cm的邮票30枚,不重不漏地拼成一个正方形,则这个正方形的边长是多少?

【答案】这个正方形的边长为15cm

12.已知13ab27互为相反数,求ab的算术平方根. 【答案】解:根据题意,得13a0b270


1

b27 31

所以ab279

3

解得a

因为39,所以ab的算术平方根是3 拓广探究创新练 13.实践与探究:

(1)计算:32________0.52________

2

3

(6)2________()2________

4

02________

(2)根据(1)中的计算结果,回答:

a2一定等于a吗?你发现其中的规律了吗?请用自己的语言描述出来; ②利用你总结的规律化简:若x2,则(x2)2________ 【答案】解:(1)3 0.5 6

3 0 4

(2)①当a0时,a2a a≥0时,a2a a2不一定等于a

从中可以得规律:正数和零的平方的算术平方根为其本身,负数的平方的算术平方根为其相反数. 2x

2.立方根

知识要点分类练

1.-64的立方根是________ 【答案】-4

2.若x0.2,则x________ 【答案】0.008

3.求下列各数的立方根:

(1)8 (2)8 (3)0.125 (4)

3

27

(5)0 125


【答案】(1)8的立方根为2 (2)8的立方根为-2 (3)0.125的立方根为0.5 (4)

273的立方根为 1255

(5)0的立方根为0

4.用计算器计算某个算式,若正确的按键顺序是3ndfA43 B34 C4 D11 【答案】C

5.借助计算器比较大小:11________5(填“>”“=”或“<”)

【答案】<

6.下列说法中,正确的有( )

①-1没有立方根;②8的立方根是±2;③0的立方根是0;④一个数的立方根不是正数就是负数.

A1 B2 C3 D4 【答案】A

7.若一个数的立方根等于它本身,则这个数是( ) A0 B1 C.-1 D0,±1 【答案】D

8.若一个立方体的体积是125cm,则它的棱长为( ) A4cm B5cm C6cm D7cm 【答案】B

9.一个立方体的体积为64m,如果将此立方体的棱长增加2m,那么新立方体的体积变为( )

A72m B216m C72m D128m

【答案】B

10.若一个立方体的体积变为原来的27倍,则表面积变为原来的________倍. 【答案】9

规律方法综合练

11.若一个数的平方根是±8,则这个数的立方根是( ) A4 B.±4 C2 D.±2 【答案】A

12.任意给定一个负数,利用计算器不断进行开立方运算,随着开立方次数的增加,结果越来越趋向( )

A0 B1 C.-1 D.无法确定

3

3

3

3

3

3

3

4

3

4,则此算式应是( )

33


【答案】C

13(1)2的立方根是( )

A.-1 B0 C1 D.±1 【答案】C

14.若x没有平方根,且|x|64,则x的立方根为( ) A8 B.-8 C.±4 D.-4 【答案】D

15.下列说法错误的是( ) A9的算术平方根是3 B64的立方根是±2

C27的立方根是3

D.立方根等于-1的数是-1 【答案】B

16.将半径为12cm的铁球熔化,重新铸造出8个半径相同的小铁球,不计损耗,则小铁球的半径是________(球的体积V【答案】6cm

17.如果a的平方根是±3,那么a17________ 【答案】4

18.求下列各式中的x (1)8x270 (2)(x1)0.1250 【答案】(1)x(2)x1.5

19.如图,两个正方体摞在一起(大正方体放在地面上),大正方体的体积为1331cm,小正方体的体积为125cm,求这个物体的最高点A离地面的距离AC

3

3

3

3

43

RR为球的半径) 3

3

3

3 2



【答案】AC16cm

20.我们知道,当ab0时,ab0也成立.若将a看成a的立方根,b看成b

3

3

3

3


立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数?

(1)试举一个例子来判断上述猜测的结论是否成立; (2)12x3x5互为相反数,求1【答案】解:(1)2(2)0

3

28(2)8,有8(8)0

3

3

3

x的值.

∴结论成立,即“若两个数的立方根互为相反数,则这两个数也互为相反数”成立. (2)(1)验证的结果,知12x3x50 x4,∴1

x121

拓广探究创新练 21数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:59319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道他是怎样迅速、准确地计算出结果的吗?请你按下面的问题试一试:

(1)1010001001000000,你能确定59319的立方根是几位数吗? 答:________位数.

(2)59319的个位数是9,你能确定59319的立方根的个位数是几吗? 答:________

(3)如果划去59319后面的319得到数59,而327464,由此你能确定59319的立方根的十位数是几吗?答:________ 因此59319的立方根是________

(4)现在换一个数185193,你能按这种方法说出它的立方根吗? 答:①它的立方根是________位数; ②它的立方根的个位数是________ ③它的立方根的十位数是________ 185193的立方根是________ 【答案】(1) (2)9 (3)3 39

(4)①两 7 5 57

62 实数

1课时 无理数与实数的概念

知识要点分类练

1.有理数和无理数的区别在于( )

A.有理数是有限小数,无理数都是无限小数 B.有理数能用分数表示,而无理数不能 C.有理数是正的,无理数是负的 D.有理数是整数,无理数是分数 【答案】B

3

3

3

3


2.下列说法正确的是( ) A.分数、整数和零合称有理数 B.无限小数都是无理数 C.无理数都是无限小数 D.带根号的数都是无理数 【答案】C 3.在数5

3

22

036,-1.4143.131131113…(两个3之间依次增加一个1)72

8中,其中无理数是________

【答案】5



3.131131113…(两个3之间依次增加一个1) 2



4.下列说法中错误的是( )

A.实数可分为正实数、0和负实数 B.无理数可分为正无理数和负无理数 C.无理数都是带根号的数

D.实数是有理数和无理数的统称 【答案】C

5.把下列各数填入相应的括号内: 70.32

311

4608216

232

(1)有理数:{ }

(2)无理数:{ } (3)正实数:{ } (4)实数:{ }

【答案】解:(1)有理数:{70.32

31

460216} 3

(2)无理数:{8

1} 22

131

468216}

23

311

4608216}

232

(3)正实数:{0.32

(4)实数:{70.32

规律方法综合练

6.下列说法正确的是( )

A16是有理数 B0是最小的实数 C27是有理数 D

3

3

2

是分数 2


【答案】C

7.试将下列各数进行分类(用两种不同的标准分类) 3.7,-429360

3

4

3.14 3

【答案】略

8.如图所示,四边形ABCD5网格中的格点正方形,网格中的每个小正方形的边长均1

(1)求正方形ABCD的面积;

(2)判断正方形ABCD的边长是有理数还是无理数.



【答案】解:(1)正方形ABCD的面积541417 (2)设正方形ABCD的边长为x,则x17 所以x17,它是无理数.

拓广探究创新练

9.写出满足条件:①是负数;②是无限不循环小数的一个数是________ 【答案】答案不唯一,如-π

10.在01234567891011个数的平方根及立方根中, (1)是有理数的有________ (2)是无理数的有________

【答案】(1)0149的平方根与018的立方根

(2)23567810的平方根与234567910的立方根

2课时 实数与数轴上点的关系

知识要点分类练

13的绝对值为( )

A3 B3 C3 D.-3 【答案】A

2.负实数a的倒数是( ) A.-a B

2

2

12

11

C Da aa


【答案】B 3

2

的相反数是( ) 2

22 B C2 D2 22

A

【答案】A

4.求下列各数的绝对值: (1)0.125 (2)0.314

3

3



(3)32 10

【答案】解:(1)|0.125||0.5|0.5 (2)|0.314



|(0.314)0.314 101010

(3)|32|(32)23



5.与数轴上的点一一对应的是( ) A.有理数 B.分数或整数 C.无理数 D.实数 【答案】D

6.如图所示,数轴上的点P表示的数可能是( )



A5 B5 C.-3.8 D10

【答案】B

7.如图所示,某位老师在讲“实数”时,画了一个图,即“以数轴的单位长度为边作一个正方形,然后以原点为圆心,正方形的对角线长为半径画弧交数轴于一点A”,作这样的图是用来说明________



【答案】实数与数轴上的点一一对应 规律方法综合练

8.如图所示,以数轴上的单位长度为直径的圆从原点沿着数轴无滑动的逆时针滚动一周到A点,则A点表示的数是________



【答案】-π

9.若实数ab互为相反数,cd互为倒数,求2a2b8cd的值.

3


【答案】解:由题意,得ab0cd1,则

2a2b8cd2(ab)8cd022

拓广探究创新练

10.如图所示,数轴的正半轴上有ABC三点,表示数12的对应点分别为ABB到点A的距离与点C到点O的距离相等,设点C所表示的数为x

33



(1)请你写出x的值;

2

(2)(x2)的立方根.

【答案】解:(1)∵点AB分别表示数12 AB(2)x

21,即x21

21,∴(x2)2(212)21

2

1的立方根为1,∴(x2)的立方根为1

3课时 实数的运算及大小比较

知识要点分类练

1.下列说法不正确的是( )

A.互为相反数的两个实数的和是有理数 B.互为倒数的两个实数的积是有理数 C.绝对值相等的两个实数的差是有理数 D.两个无理数的和可能是有理数 【答案】C 2.计算:

(1)8123(精确到个位) (2)23

5

100.04(精确到0.01) 2

【答案】(1)11 (2)2.58 3.在A

1

0,-12这四个实数中,最大的是( ) 3

1

B0 C.-1 D2 3

【答案】D


4.比较大小:4________15(填“>”或“<”) 【答案】>

5.写出一个比-3大的无理数是________ 【答案】答案不唯一,如2

6.将下列各数在数轴上表示出来,并回答问题: 22

5

,-59π 2

(1)将上面几个数用“<”连接起来; (2)在数轴上表示

5

和-2这两个数的点之间的距离是________ 2

5 2

【答案】在数轴上表示略 (1)5922(2)

9 2

规律方法综合练

7.我们知道19是无理数,那么191在哪两个整数之间( ) A12 B23 C34 D45 【答案】C

8.规定:用符号[x]表示不大于实数x的最大整数,例如[3.69]3[31]2[2.56]=-3[3]2.按这个规定,[131]________ 【答案】-5

9.比较下列两组数的大小: (1)5345

(2)

517

28

2537545165807580

(1)53

5345,∴5345

(2)252.5,∴

21512.51

222



1515177

0,而0.75,∴ 22288

拓广探究创新练


10.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用21来表示2的小数部分,你同意小明的表示方法吗? 事实上,小明的表示方法是有道理的,因为2的整数部分是1用这个数减去其整数部分,差就是小数部分.

请解答:已知103xy,其中x是整数,且0y1,求xy的相反数. 【答案】解:因为1所以x11,则y

32x是整数,0y1 31

所以xy11(31)123 xy的相反数312

专题训练() 实数易错题专训



1(6)的平方根是( ) A.-6 B36 C.±6 D6 【答案】C

2.计算:1【答案】1

3.计算:9242________ 【答案】65

4.计算:(1)49________ (2)49________ 【答案】(1)7 (2)±7

22

5.若a(4)的算术平方根,(9)的平方根是b,求ab的值.

2

9

________ 16

14


【答案】17



6.下列说法正确的是( ) A.-4的平方根是-2 B.-8的立方根是±2 C.负数没有立方根 D.-1的立方根是-1 【答案】D

764的立方根是________ 【答案】4

8(4)的算术平方根是________ 【答案】4π

916的平方根是________ 【答案】±2

108的立方根是________ 【答案】2



11.下列说法:①无理数是无限小数,无限小数是无理数;②无理数包括正无理数、0和负无理数;③带根号的数都是无理数;④无理数是开方开不尽的数;⑤正确的有( )

A0 B2 C4 D5 【答案】A 12.下列各数:

3

3

2

3

是一个分数.其中3

22

π3.14159262.121121112…(两个2之间依次增加一个1),其中是无7

理数的是________

【答案】π2121121112…(两个2之间依次增加一个1)

13.下列各数:32589,其中是无理数的是________ 【答案】39

14.计算:(1)362

3

3

3

13

27 4


(2)

311

63(2)28 164

【答案】(1)(2)

3

2

7 4

小结与思考



14的平方根是( )

A2 B16 C.±2 D.±16 【答案】C 227等于( )

A9 B.-9 C3 D.-3 【答案】C

3(2)的算术平方根是( )

A2 B.±2 C.-2 D2 【答案】A

4.下列各式中,正确的是( ) A(3)23 B323 C(3)3 D323

223

【答案】B

5.-27的立方根与81的平方根之和为( ) A0 B.-6 C0或-6 D6 【答案】C

6.如果一个正整数a的两个平方根是732x (1)ax的值;

(2)223a的立方根. 【答案】(1)a49 x5 (2)5

7.已知3x1的平方根,也是x2y1的立方根,求xy的平方根.

2

【答案】解:由题意知x139x2y1327

2

2

2

所以x10y=-8

所以xy10(8)6

2

2

2

2




8.下列各数是无理数的是( )

A4 B Cπ D.-1 【答案】C

2

9.在下列各数:25π0.570.585885888588885…(两个5之间依次增加一

3

13

13

8)中,无理数有( )

A2 B3 C4 D5 【答案】B

102的相反数是( ) A2 B2 C1

2

D2 【答案】A

11.计算:(1)1|12| (2)3

64916

1

2

0.04(3)2 (3)232104(精确到0.01) 【答案】(1)2 (2)36.9 (3)11.98

12.如图,在数轴上表示实数15的点可能是(

A.点P B.点Q C.点M D.点N 【答案】C

13.估计101的值在( ) A23之间 B34之间 C45之间 D56之间 【答案】C

14.与15最接近的整数是( ) A4 B3 C2 D1 【答案】B 15.若k

90k1(k是整数),则k的值为( )

)


A6 B7 C8 D9 【答案】D 16.比较

311

的大小. 33311

33

【答案】

17.当x________时,x11有最小值,这个最小值为________ 【答案】-1 1

18.若a4|b2|0,求ab的立方根. 【答案】解:根据题意,得

a40,a4,

解得

b20,b2.

ab=-8,所以ab的立方根是-2



19.如图,在一块正方形白铁皮的右上角切去一块边长为3cm的小正方形,若余下部分的面积为19cm,求原正方形铁皮的边长(结果精确到0.1cm)

2



22

【答案】解:由题意知,原正方形铁皮的面积为31928(cm),因为285.3,所

以原正方形铁皮的边长为5.3cm 20(1)填写下表: a

0.0001

0.01

1

100

10000

a ________ ________ ________ ________ ________

想一想:上表中已知数a的小数点的移动与它的算术平方根a的小数点的移动之间有何规律?


(2)利用规律计算:已知15k0.15a1500b,用含k的代数式分别表示ab

(3)如果x1007,求x的值.

【答案】解:(1)表中依次填0.010.1110100

规律:被开方数的小数点每移动两位,它的算术平方根的小数点向相同方向移动一位. (2)因为15k0.15a1500b 所以a

k

b10k 10

(3)因为x1007,所以x70000

自我综合评价() [测试范围:第6 实数]



1.在实数0π

22

29中,无理数有( ) 7

A1 B2 C3 D4 【答案】B

1

,-1,其中最小的是( ) 21

A0 B3 C D.-1

2

2.给出四个数03【答案】D

3.下列运算正确的是( )

2

A42 B(3)3

3

C82 D|6|【答案】C

4.下列语句中正确的是( ) A49的算术平方根是7 B49的平方根是-7 C.-49的平方根是7 D49的算术平方根是±7 【答案】A

5.计算(3)的结果是( )

2

6

A.-3 B3 C.-9 D9 【答案】B

6.估计312的值在( ) A12之间 B23之间


C34之间 D45之间 【答案】C

7.如图是一个数值转换机,若输入a的值为4,则输出的结果应为( )



A2 B.-2 C1 D.-1 【答案】D

8.若x(9)2

的平方根,y64的立方根,则xy的值为( )

A3 B7

C37 D17 【答案】D 9.若

x2,mxy1是二元一次方程组ny8,

的解,则2mn的算术平方根为( )

nxmy1

A4 B2 C2 D.±2 【答案】B

10现在规定一种新的运算“※”:abb

a9293

1

27

3等于( A

13 B3 C1

3

D.-3 【答案】C

115的相反数是________;立方等于-8的数是________ 【答案】5 2

12.比较大小:7________50(填“>”“<”或“=”) 【答案】<

13.-4________的一个平方根. 【答案】16

14.在数轴上表示3的点到原点的距离是________ 【答案】3

15.若20.154.489,则2015________ 【答案】±44.89

16.若a2

64,则3

a________

)
【答案】±2

175的小数部分的值是________(准确值) 【答案】52

18平方根节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如200933日,201644日,请你写出21世纪内你喜欢的一个平方根节:________(题中所举例子除外) 【答案】200111(答案不唯一)

19.计算: (1)0.125 (2)80

33

1 4

【答案】(1)0.5 (2)1.5

20.求下列各式中x的值: (1)x0.16 (2)x

32

216

0 1256 5

【答案】(1)x=±0.4 (2)x

21.化简:|62||21||63| 【答案】264

22.把下列各数填入相应的大括号内:

33

3280.53.14159265|25|1.3030030003…(两个3之间依次

2

增加一个0)

(1)有理数:{ } (2)无理数:{ } (3)正实数:{ } (4)负实数:{ } 【答案】解:(1)有理数:{

33

80.53.14159265|25|} 2

(2)无理数:{321.3030030003…(两个3之间依次增加一个0)}

(3)正实数:{320.53.141592651.3030030003…(两个3之间依次增加一个0)}


(4)负实数:{

33

8|25|} 2

23.一个正数a的两个平方根分别是2m15m8,求a的值. 【答案】解:依题意,得2m1=-(5m8),解得m1 所以2m15m8的值分别是3和-3 所以a(3)9

22016

24.若a2015(b2016)0,试求代数式(ab)的值.

2

【答案】解:由题意,得

a20150,a2015,

解得

b20160,b2016,

因此(ab)2016(1)20161

25.如图,数轴上点A表示的数为21,点A在数轴上向左平移3个单位长度到达点BB表示的数为m

(1)m的值;

2

(2)化简:|m1|(2m)



【答案】(1)m(2)23

7 一元一次不等式与不等式组

71 不等式及其基本性质 1课时 不等式的认识

知识要点分类练

1.下列式子中,是不等式的是( ) Ax10 B

2

22

2 x

Cx2x3 D2x30 【答案】D

2.下列式子:①20;②2x30;③x2010;④xx;⑤x≠0;⑥x31中,其中是不等式的是________(填序号)

【答案】①②⑤⑥

3.某种品牌的八宝粥,外包装标明:净含量为(330±10)g,说明这罐八宝粥的净含量x范围是( )

A320x340 B320≤x340

2


C320x≤340 D320≤x≤340 【答案】D

4.如图,身高为xcm1号同学与身高为ycm2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x________y(填“>”或“<”)



【答案】<

5坐在行驶在公路上的汽车里会看到不同交通标志图形,它们有着不同的意义,如图所示,如果设汽车的质量为xt,速度为ykmh,宽度为lm,高度为hm,用不等式表示图中的意义:

(1)________(2)________ (3)________(4)________



【答案】(1)x≤5.5 (2)y≤30 (3)h≤3.5 (4)l≤2

6.用不等式表示:

(1)x2倍与5的差不大于1 (2)x

11

x的和是非负数. 32

【答案】(1)2x5≤1 (2)

11

xx0 32

规律方法综合练

7.无论x取何值,下列不等式总成立的是( ) Ax50 Bx50

C(x5)0 D(x5)0

【答案】D

8.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m以外的安全区域.已知导火线的燃烧速度为0.2ms,人离开的速度为4ms,导火线的长度x(m)应满足怎样的关系式?

2

2


【答案】解:由题意,得导火线的长度x应满足

10x



40.2

拓广探究创新练

9.小林要在水果摊上买2千克苹果,摊主称了几个苹果说:“你看秤,高高的.”如果设苹果的实际质量为x千克,那么用不等式把这个“高高的”意思表示出来是( ) Ax≤2 Bx≥2 Cx2 Dx2 【答案】C

10.若x≥2的最小值是ay6的最大值是b,则ab________ 【答案】-4

【解析】因为x≥2的最小值是a,所以a2;因为y6的最大值是6,所以b=-6,所以ab26=-4.故答案为-4

2课时 不等式的基本性质

知识要点分类练

1.若xy,则下列式子中错误的是( ) Ax3y3 B

xy 33

Cx3y3 D.-3x>-3y 【答案】D

2.已知abc为任意实数,则下列不等式中总成立的是( ) Aacbc Bacbc Cacbc Dacbc 【答案】B

3.下列不等式变形正确的是( ) A.由4x12,得4x1 B.由5x3,得xC.由

3 5

y

0,得y2 2

D.由-2x4,得x<-2 【答案】B

4.用“>”或“<”填空:

(1)xy,则3x1________3y1 (2)ab,则1a________1b 【答案】(1) (2)

5.根据不等式的基本性质,把下列不等式化成“xa”或“xa”的形式: (1)x23 (2)6x5x1 (3)4x4 【答案】(1)x5 (2)x>-1 (3)x<-1

规律方法综合练

6.设表示三种不同的物体,现用天平称了两次,情况如图所示,那么这三种物体按质量从大到小的顺序排列为( )




A B C D 【答案】B

7.下列说法不一定成立的是( ) A.若ab,则acbc B.若acbc,则ab C.若ab,则acbc D.若acbc,则ab

【答案】C

8.由xy得到axay的条件是________ 【答案】a0

9.已知实数abc在数轴上对应的点如图所示,请判断下列不等式的正确性. (1)bcab(2)acab

(3)cbab(4)cbab (5)acbc(6)acbc



【答案】解:由数轴可知cbaa0b0c0 因为ca,两边都乘以bb是一个负数, bcab,故(1)正确;

因为cb,两边都乘以aa是一个正数,得acab (2)不正确;

因为ca,两边都减去b,得cbab,故(3)正确; 因为ca,两边都加上b,得cbab,故(4)不正确; 因为ab,两边都减去c,得acbc,故(5)正确; 因为ab,两边都加上c,得acbc,故(6)不正确. 拓广探究创新练

10.现有不等式的性质:

①在不等式的两边都加上(或减去)同一个数(或整式),不等号的方向不变;

②在不等式的两边都乘以同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等式的方向改变. 请解决以下两个问题:

(1)利用性质①比较2aa的大小(a≠0) (2)利用性质②比较2aa的大小(a≠0)

【答案】解:(1)a0时,aaa0,即2aa a0时,aaa0,即2aa (2)a0时,由21,得aa,即2aa a0时,由21,得aa,即2aa

72 一元一次不等式

2

2

2

2


1课时 一元一次不等式及其解法

知识要点分类练

1.下列不等式中,是一元一次不等式的是( ) Ax2

1x B.-y1y C

1

x

2 Dx210 【答案】B

2x=-1不是下列哪个不等式的解( ) A2x1≤3 B2x1≥3 C.-2x1≥3 D.-2x1≤3 【答案】A

3.下列说法正确的是( )

Ax4是不等式2x>-8的一个解 Bx=-3是不等式2x>-8的解集 C.不等式2x>-8的解集是x4 D.不等式2x>-8的解集是x<-4 【答案】A

4.不等式32x5的解集是________ 【答案】x1 5.解不等式:

(1)3x2x4 (2)32(x1)1 【答案】(1)x3 (2)x2

6.一元一次不等式x1≥0的解集在数轴上表示正确的是( A B C D



【答案】A

7.将下列不等式的解集在数轴上表示出来: (1)x2 (2)x≥0 【答案】解:(1)如图.



)
(2)如图.



规律方法综合练

8.若不等式(m2)x2m的解集为x<-1,则m的取值范围是________ 【答案】m2

9.写出一个解集为x≥1的一元一次不等式:________ 【答案】答案不唯一,如2x1≥1

10.解不等式5x23(x1),并把它的解集表示在数轴上. 【答案】x

5

解集在数轴上表示略 2

拓广探究创新练

11.如图是甲、乙两人玩跷跷板的示意图(支点在中点处),甲的体重是mkg,则m的取值范围在数轴上表示正确的是图中的( )



ABCD【答案】B

2课时 解较复杂的一元一次不等式

知识要点分类练

1.不等式



3x2

x的解集是( ) 2

Ax<-2 Bx<-1 Cx0 Dx2 【答案】A 2.解不等式

x1x1

x1,下列去分母正确的是( ) 32

A2x13x1≥x1

B2(x1)3(x1)≥x1 C2x13x1≥6x1

D2(x1)3(x1)≥6(x1) 【答案】D


3.不等式1【答案】x≤4

32x

的解集是________ 5

x1

,并把它的解集在数轴上表示出来. 3



4.解不等式2x3

【答案】不等式的解集为x2 解集在数轴上表示略

5.不等式

x1x3

1的正整数解是( ) 62

A0 B1

C01 D12 【答案】B 6.不等式11

x

的最大整数解为( ) 2

A.-2 B.-3 C.-4 D.-5 【答案】B

7.不等式42xx1的所有负整数解的和为________ 【答案】-15 规律方法综合练

3(2k5)

的值不大于代数式5k1的值,则k的取值范围是________ 217

【答案】k

44x4(x1)

9.求不等式的所有自然数解. 1

23

8.若代数式

【答案】不等式的自然数解是012

10.已知不等式2(x1)43(x1)2的最小整数解是关于x的方程2xmx4的解,m的值.

【答案】解:由2(x1)43(x1)2x>-3 所以不等式的最小整数解为x=-2

x=-2代入2xmx4中,解得m4 拓广探究创新练

11.已知关于xy的方程组

3x2yk1,

的解满足xy,求k的取值范围.

4x3yk1

3x2yk1,

【答案】解:解关于xy的方程组

4x3yk1,



xk5,



yk7.


因为xy

所以k5>-k7,解得k>-6

3课时 一元一次不等式的应用

知识要点分类练

1.小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x根火腿肠,则关于x的不等式表示正确的是( ) A42x24 B42x≤24 C3x2×4≤4 D3x2×4≥24 【答案】B

2.某公司打算至多用1200元印制广告单.已知制版费为50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x()满足的不等式为________ 【答案】500.3x≤1200

3.有关学生体质健康评价指标规定:握力体重指数m(握力÷体重100,九年级男生的合格标准是m≥35如果九年级男生小明的体重是50kg那么小明的握力至少要达到________kg时才能合格. 【答案】17.5

4.有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料重20kg,电梯的最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载________捆材料. 【答案】42

5.某商场新进一批服装,进货价为每件200元,如果要使利润率不少于15%,那么这种服装的售价至少为多少元?

【答案】解:设这种服装的售价为x元,由题意,得

x20015

,解得x≥230

200100

答:这种服装的售价至少为230元. 规律方法综合练

6.有人问一位老师他所教的班有多少名学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐七分之一的学生在念外语,还剩下不足6位同学在操场踢足球.”则这个班共有学生( )

A56 B48 C28 D.不能确定 【答案】C

7.某品牌商品成本为600元,标价为1200元,后来由于该商品积压,商店要求打折销售,但应保证利润率不低于20%,则最低可打( ) A6 B6.5 C7 D7.5 【答案】A

8.若三个连续自然数的和小于12,则这样的自然数组共有( ) A1 B2 C3 D4 【答案】C

9.市政公司为绿化一段沿江风光带,计划购买甲、乙两种树苗共500株,甲种树苗每株50元,乙种树苗每株80元.若购买树苗的钱不超过34000元,则至少购买甲种树苗多少株? 【答案】解:设购买甲种树苗x株,则购买乙种树苗(500x)株.由题意,得50x80(500x)≤34000


解得x≥200.所以至少购买甲种树苗200株.

10.我市某中学举行地理知识抢答赛,总共50道抢答题.抢答规定:抢答对1题得3分,抢答错1题扣1分,不抢答得0分.小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,则小军至少要答对几道题?

【答案】解:设小军答对x道题.依题意,得3x(20x)≥50,解得x17

1

.因为x为正2

整数,所以x的最小正整数解为18,所以小军至少要答对18道题.

11.我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问: (1)从今年年初起每年新增电动车数量最多是多少万辆?

(2)(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1)

【答案】解:(1)设从今年年初起每年新增电动车x万辆,则今年年底车辆数为10(110)x,即(9x)万辆;

明年年底车辆数为(9x)(110)x,即(8.11.9x)万辆. 由题意,得8.11.9x≤11.9,解得x≤2

答:从今年年初起每年新增电动车数量最多是2万辆. (2)(1)得今年年底车辆数为9211(万辆)

11.911

100%8.2% 11

答:今年年底到明年年底电动车拥有量的年增长率是8.2%.

12.为推进郴州市创建国家森林城市工作,尽快实现“让森林走进城市,让城市拥抱森林”的构想,今年三月份,某县园林办购买了甲、乙两种树苗共1000棵,其中甲种树苗每棵40元,乙种树苗每棵50元.根据相关资料表明:甲、乙两种树苗的成活率分别为85%和90%. (1)若购买甲、乙两种树苗共用去了46500元,则购买甲、乙两种树苗各多少棵? (2)若要使这批树苗的成活率不低于88%,则至多可购买甲种树苗多少棵? 【答案】解:(1)设购买甲种树苗x棵,购买乙种树苗y棵. 根据题意,得

xy1000,



40x50y46500,

解得

x350,



y650.

答:购买甲种树苗350棵,购买乙种树苗650棵.

(2)设购买甲种树苗x棵,则购买乙种树苗(1000x)棵.根据题意,得85x90(1000x)≥1000×88%,解得x≤400

答:至多可购买甲种树苗400棵.

13.在五一假期,某公司组织员工到某地旅游.甲、乙两家旅行社为了吸引更多的顾客,分别推出了赴该地旅游的团体优惠方案.甲旅行社的优惠方案:4张全票,其余人按原价五折优惠;乙旅行社的优惠方案:一律按原价六折优惠.已知这两家旅行社的票价原价均为a元,且在旅行过程中的各种服务质量相同.如果你是该公司的负责人,那么你会选择哪家旅行社?

【答案】解:设有x人参加旅游,选择甲旅行社所需要的费用为[4a0.5a(x4)]元,选择乙


旅行社所需要的费用为0.6ax元. 4a0.5a(x4)0.6ax时,x20 4a0.5a(x4)0.6ax时,x20 4a0.5a(x4)0.6ax时,x20

即当参加旅游的人数为20人时,选甲、乙旅行社均可;当参加旅游的人数少于20人时,选乙旅行社;当参加旅游的人数多于20人时,选甲旅行社. 拓广探究创新练

14.合肥市某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元.已知甲、乙、丙三种型号的电视机的出厂价格和售出后每台的利润如下表:

型号



1500 200

2000 300

出厂价(元/台) 1000 每台利润()

200

(1)求该商场至少购买丙种电视机多少台;

(2)若要求甲种电视机的台数不超过乙种电视机的台数,且使售出后所获利润最高,请设计进货方案,并求售出后的最高利润.

【答案】解:(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(1085x)台,根据题意, 1000×4x1500×(1085x)2000x≤147000 解这个不等式得x≥10

因此至少购买丙种电视机10台.

(2)(1)知购买甲种电视机4x台,购买乙种电视机(1085x) 台,根据题意,得4x≤1085x 解得x≤12

因为售出后每台甲、乙电视机的利润相同,且丙种电视机的利润最高,所以x越大时,总利润越高,即当x12时,甲种电视机48台,乙种电视机48台,总利润最高. 最高利润为(4848)×20012×30022800()

即购买甲种电视机48台,乙种电视机48台,丙种电视机12台,可使售出后所获利润最高,最高为22800元.

周滚动练习() [测试范围:7172]



1.下列式子:-1≥0x302x3x4≠0中,其中不等式有( ) A1 B2 C3 D4 【答案】C

2.下列各式中,是一元一次不等式的是( ) Ax

52 B2x1x x

Cx2y1 D2x1≤3x 【答案】D

3.若ab都是实数,且ab,则下列不等式的变形正确的是( )


Aaxbx B.-a1<-b1 C3a3b D

ab 22

【答案】C

4.如果t0,那么ata的大小关系是( ) Aata Bata Cata D.不能确定 【答案】A

5.不等式2x4≥0的解集在数轴上表示为( ) ABCD



【答案】D

6x2倍与3的差不大于1,列出不等式是( ) A2x3≤1 B2x3≥1 C2x31 D2x31 【答案】A

7.不等式3x53x的正整数解有( ) A1 B2 C3 D4 【答案】C

8.如果关于x的不等式(a1)xa1的解集为x1,那么a的取值范围是( ) Aa0 Ba<-1 Ca1 Da>-1 【答案】B

9.若关于xy的方程组

3xyk1,

的解满足xy0,则k的取值范围是( )

x3y3

Ak4 Bk>-4 Ck4 Dk<-4 【答案】B

10.东营市出租车的收费标准是起步价8(即行驶距离不超过3千米都需付8元车费),超3千米以后,每增加1千米,加收1.5(不足1千米按1千米计算).如果某人从甲地到乙地经过的路程是x千米,付车费15.5元,那么x的最大值是( ) A11 B8 C7 D5 【答案】B

11.写出一个解集是x2的不等式:________ 【答案】答案不唯一,如2x4

12.当x________0时,-2x的值为正数.


【答案】<

13.若a2b2,则-2a________2b(填“>”或“<”) 【答案】<

14.不等式2x31的解集是________ 【答案】x2

15.若关于x的不等式的解集在数轴上表示如图所示,则该不等式可能是________



【答案】答案不唯一,如x≤1

16.不等式83x≥0的最大整数解是________ 【答案】2 17.若代数式【答案】x≥18

18.已知abcd为实数,现规定一种新的运算:x的取值范围是________ 【答案】x≤3

19.解不等式2

xx

1的值不大于代数式2的值,则x的取值范围为________ 32

ac

bd

adbc,若

24

1x5

18

2x1

x,并将它的解集在数轴上表示出来. 3

【答案】x≥5 解集在数轴上表示略

3xa3x

的解集为x7,求a的值.

132

3xa3x392a392a

【答案】解:x因为此不等式的解集为x77

13277

20.已知关于x的不等式

解得a5

21.若关于x的方程5(x2)3k2x4(k1)的解是非负数,求k的取值范围. 【答案】解:5(x2)3k2x4(k1) 去括号,得5x103k2x4k4 移项、合并同类项,得3x=-k6 x的系数化为1,得x

k6

3

因为方程的解是非负数, 所以

k6

0,即k6 3

22.某物流公司,要将300吨物资运往某地,现有AB两种型号的车可供调用,已知A车每辆可装20吨,B型车每辆可装15吨.在每辆车不超载的条件下,300吨物资装运完,在已确定调用5A型车的前提下至少还需调用B型车多少辆? 【答案】解:设还需调用B型车x辆,根据题意,得 20×515x≥300,解得x13

由于x是车的数量,应为整数,所以x的最小值为14

1

3


答:至少还需调用B型车14辆.

23.某电器超市销售每台进价分别为200元、170元的AB两种型号的电风扇,下表是近两周的销售情况:

销售数量

销售时段

A种型号 B种型号

第一周 第二周

3 4

5 10

1800 3100 销售收入

(进价、售价均保持不变,利润=销售收入-进货成本) (1)AB两种型号的电风扇的销售单价.

(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台.

(3)(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.

【答案】解:(1)AB两种型号的电风扇的销售单价分别为每台x元、y元.依题意,得

3x5y1800,



4x10y3100,

解得

x250,



y210.

答:AB两种型号的电风扇的销售单价分别为每台250元、210元. (2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30a)台. 依题意,得200a170(30a)≤5400 解得a≤10

答:A种型号的电风扇最多能采购10台. (3)不能,理由:

依题意,得(250200)a(210170)(30a)1400 解得a20,此时a10

所以在(2)的条件下,超市销售完这30台电风扇不能实现利润为1400元的目标.

73 一元一次不等式组

1课时 一元一次不等式组的概念及其解法

知识要点分类练

1.下列不等式组中,是一元一次不等式组的是( )

x2,x12,A B

x5y35


3x17,

x12,C2 D21

x2x0x

【答案】A



x1,

2.不等式组的解集是( )

x2

Ax>-1 Bx2

C.-1x2 Dx2 【答案】B

x2,

3.在x=-4,-103中,满足不等式组x的值是( )

2(x1)2

A.-40 B.-4和-1

C03 D.-10 【答案】D

x1,

4.不等式组的解集在数轴上表示正确的是( )

x2

ABCD



【答案】A

5.若关于x的一元一次不等式组的解集在数轴上表示如图所示,则此不等式组的解集是( )



Ax1 Bx≥1 Cx3 Dx≥3 【答案】C

x21,

6.把不等式组的解集表示在数轴上,正确的是( )

3x0

A


B

C

D【答案】D 7.不等式组



x512x,

的解集是________

3x24x

3x60,

的所有整数解的和为________

42x0

【答案】2≤x4 8.不等式组【答案】-2

2x1x1,

9.解不等式组并把解集在数轴上表示出来.

x84x1,



【答案】不等式组的解集是2x3 解集在数轴上表示略

规律方法综合练

x3,

10.若不等式组的解集是x3,则m的取值范围是________

xm

【答案】m≤3

11.定义新运算:对于任意实数ab都有ababab1,等式右边是通常的加法、减法及乘法运算,例如:2442418613.请根据上述知识解决问题:3x的值大于5而小于9,则x的取值范围是________ 【答案】

711x 22

【解析】3x3x3x12x2,根据题意,

2x25,711

解得x

222x29,

2x53(x2),

12.解不等式组并把它的解集表示在数轴上.

3x15,

【答案】不等式组的解集是-1≤x2 解集在数轴上表示略 13.求不等式组

2x3,

的最小整数解.

x182x


【答案】不等式组的最小整数解是-1 14.求不等式组23x78的解集. 【答案】解:原不等式组可化为

3x72,



3x78,

x3,解得

x5.

故原不等式组的解集为3≤x5 15.若不等式组

1xa,

有解,求a的取值范围.

2x40

1xa,

【答案】解:

2x40,

由①,得xa1

由②,得x≤2

∵此不等式组有解, a12 解得a3 16.已知不等式组

2xa1,

的解集为-1x1,求(a1)(b1)的值.

x2b3

1a

2

【答案】解:由2xa1,得xx2b3,得x32b ∴不等式组的解集为32bx

1a

2

32b1,

a1,

又∵-1x1,∴1a解得

1b2.2

(a1)(b1)(11)(21)=-6 17.若不等式组

x2a1,

的整数解只有4个,求实数a的取值范围.

x2

x2a1,

得-2x2a1.因为不等式组的整数解只有4个,

x2,

1

a1 2

【答案】解:解不等式组

所以x可取-1012,所以22a1≤3,解得

拓广探究创新练

18.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]5[5]5[π]=-4


(1)如果[a]=-2,那么a的取值范围是________ (2)如果[

x1

]3,求满足条件的所有正整数x 2

x1

4,解得5≤x7,则满足条件的所有正整数x56 2

2课时 解较复杂的一元一次不等式组

【答案】解:(1)2≤a<-1 (2)根据题意,得3

知识要点分类练

1.不等式组1

3x10,

的解集是( )

2x0

A

1

3

x2 B.-3x≤2 Cx≥2 Dx<-3 【答案】B

x11,2.不等式组

12

x1的解集在数轴上表示正确的是( A

B

C

D

【答案】D

2(x2)3(x1),3.不等式组

x

3x1的解集是________

4【答案】-1≤x3

4.解不等式组:

2x13(x1),1xx1

2

31.【答案】不等式组的解集是x≤1

)


3(x2)4x,

5.解不等式组12x并把解集在数轴上表示出来.

x1,3

【答案】不等式组的解集为1≤x4

解集在数轴上表示略

x3(x2)4,

6.求不等式组14x的整数解.

x13

【答案】不等式组的整数解为-3,-2,-101

规律方法综合练

1

x13,

7.不等式组2的最大整数解为( )

x2(x3)0

A8 B6 C5 D4

【答案】C

x3(x2)4,

8.若不等式组a2x无解,则a的取值范围是( )

x3

Aa1 Ba≤1 Ca1 Da≥1

【答案】B

2x53(x2),

9.解不等式组把不等式组的解集在数轴上表示出来,并写出不等式组13x

2x1,2

的非负整数解.

【答案】不等式组的解集为-1≤x3 解集在数轴上表示略

不等式组的非负整数解为210

10.小刚给小东打电话,但忘了电话号码中的一位数字,只记得号码是284□9456.若位置

2x110,

的数字是不等式组的整数解,求可能表示的数字. 1

xx42

【答案】□可能表示的数字为678

xy3,

11.已知关于xy的方程组的解满足不等式xy3,求实数a的取值范围.

2xy6a

【答案】a1


2x3(x3)1,

12.若关于x的不等式组3x2有四个整数解,求a的取值范围.

xa4

2x3(x3)1,



【答案】解:3x2

xa,4

解不等式①,得x8

解不等式②,得x24a

∴不等式组的解集为8x24a

∵不等式组有四个整数解,即9101112 1224a≤13 解得

115a 42

拓广探究创新练 13.若不等式组

x4mx10,

的解集是x2,则整数m的值是( )

x1m

A2 B3 C4 C5 【答案】B

14.阅读下列材料,然后解答后面的问题:我们知道方程2x3y12有无数组解,但在实际生活中我们往往只需要求出其正整数解. 例:由2x3y12,得y

122x2

4x(xy为正整数) 33

x0,22

解得0x6又∵y4x为正整数,x为正整数.23互质,

33122x0,

可知x3的倍数,x3代入y4

22

xy4x322x3y12的正整33

数解为

x3,

y2.

问题:

(1)请你写出方程2xy5的一组正整数解:________ (2)

6

为自然数,则满足条件的x的值有________个; x2

(3)七年级某班为了奖励学习进步的学生,购买了单价为3元/本的笔记本与单价为5元/支的钢笔两种奖品,共花费35元,则共有几种购买方案? 【答案】解:(1)2xy5 y52x(xy为正整数)

x0,

0x2.5,∴当x1时,y3;当x2时,y1.即方程的正整数解是

52x0,


x1,x2,

(只要写出其中的一组即可)

y3,y1.

6

为自然数,则有0x2≤6,即2x≤8 x2

6666

x3时,x4时,x5时,x8时, 6321

x2x2x2x2

(2)

即满足条件的x的值有4个.

(3)设购买了x本笔记本,y支钢笔.由题意,得3x5y35 y

x0,353x3x353x

y为正整数)解得0x又∵y77(x

5535353x0,

为正整数,∴

3x

为正整数.由35互质,知x5的倍数,从而x510,∴533

y754y7101

55

∴有两种购买方案:①买笔记本5本,钢笔4支;②买笔记本10本,钢笔1支.

专题训练() 不等式()中的参数确定



1.如果不等式2(a2)x2a4的解集是x1,那么a的取值范围是( ) Aa≤2 Ba≥2 Ca2 Da0 【答案】C 2.如果不等式组

2x13(x1),

的解集是x2,那么m的取值范围是( )

xm

Am2 Bm2 Cm≤2 Dm≥2 【答案】D

3.已知关于x的不等式(3a2)x23的解集是x2,求a的值. 【答案】a

5 6

xa,

4.若不等式组的解集是-1x2,试确定a的值.

42x0

【答案】a=-1



5.如果不等式2xm0的正整数解是123,那么m的取值范围是________ 【答案】6m≤8

6.如果某一元一次不等式组的负整数解为-3,-4,那么这个一元一次不等式组可以是________(只写一个即可) 【答案】答案不唯一,如

2x100,



x3


7.如果关于x的不等式组

3xa0,

的整数解仅有012,那么适合这个不等式组的

4xb0

整数ab组成的有序数对(ab)共有________个. 【答案】12

【解析】先解不等式组,用ab表示出不等式组的解集,根据不等式的整数解仅有012,即可确定ab的值. 解不等式组

3xa0,ab

x 344xb0,

∵整数解仅有012 1

ab

023 34

a=-2,-10b9101112

则整数ab组成的有序数对(ab)共有12个. 故答案是12

8.若关于x的不等式xb0恰有两个负整数解,则b的取值范围是( ) A.-3b<-2 B.-3b2 C.-3≤b2 D.-3≤b<-2 【答案】D 9.若不等式组Am

53x0,

有实数解,则实数m的取值范围是( )

xm0

55 Bm 33

55

Cm Dm

33

【答案】A

10.若关于x的一元一次不等式组

xa0,

无解,则a的取值范围是( )

12xx2

Aa≥1 Ba1 Ca1 Da<-1 【答案】A

11.对于任意实数mn,定义一种运算:mnmnmn3,等式的右边是通常的加减和乘法运算,例如:35535310.请根据上述定义解决问题:若a2x7且解集中有两个整数解,则a的取值范围是________

【答案】4≤a5

【解析】根据题意,得2x2x2x3x1.因为ax17,所以a1x6.因为解集中有两个整数解,所以3≤a14,所以a的取值范围为4≤a5故答案为4≤a5 12已知关于xy的二元一次方程组

x2y4k,

且-1xy0k的取值范围为

2xy2k1,


________ 【答案】

1

k1 2

13.若关于xy的二元一次方程组________ 【答案】a4

14.已知关于xy的方程组

3xy1a,

的解满足xy2,则a的取值范围为

x3y3

3x2y3m,

的解中x≤0,求m的取值范围.

2xy4

3x2y3m,

【答案】解:

2xy4,

3m8

7

3m88

因为x≤0,所以0,解得m

73

8

所以m的取值范围是m

3

由①+②×2,得7x3m8,所以x15.已知关于xy的方程组

3x3ym1,

m为何值时,xy

2xym1,



【答案】解:

3x3ym1,

2xym1.

由②×3-①,得3x2m4

2m4

32m45mx代入②,得y

33

解得x

2m4

x,3

所以方程组的解为

5my.3

xy,得

2m45m,解得m3 33



16.已知2a3x103b2x160,且a≤4b,求x的取值范围. 【答案】解:由已知,得a

3x12x16

b 23


3x1

4,2

依题意,得

2x164,3

解此不等式组得-2x≤3

所以x的取值范围是-2x≤3

17.已知x2y3,且满足x≥0y≥0 (1)y的取值范围;

(2)m2x3y,求m的取值范围. 【答案】解:(1)由题意,得x32y x≥0y≥0,∴

32y0,3

解得0y

2y0,

9

m6 2

(2)m2x3y2(32y)3y6y,∴

74 综合与实践 排队问题

知识要点分类练

1.中午晓琪到食堂买饭,她发现一个窗口每分钟最多可以有2个人买好饭,排队时她发现前面有14人,则她买到饭至少要等( ) A6分钟 B6.5分钟 C7分钟 D7.5分钟 【答案】C

【解析】最快就是她最前面的第一个人已经买好,加上她自己共14人买饭,所以至少要7分钟.

2.某大型音乐会在艺术中心举行.观众在门口等候检票进入大厅,且排队的观众按照一定的速度增加.检票速度一定,当开放一个大门时,需用半小时待检观众全部进入大厅,同时开放两个大门,只需十分钟,现在想提前开演,必须在五分钟内全部检完票,则音乐厅应至少同时开放的大门数是( )

A3 B4 C5 D6 【答案】B

【解析】设现在有观众a人,每分钟增加b人,一个大门每分钟检票c人,若要求五分钟内全部检完,则需要同时开放x个大门. 根据题意,得

30ca30b,



210ca10b,

1ca,15解得

1ba.30

则有5cxa5bx≥3.5


3.小明在火车站检票口做人流量统计,他发现在检票开始前已有一些人排队,检票开始后每分钟有10人前来排队检票,一个检票口每分钟能让25人通过检票进站,只开通一个检票口,检票8分钟后就没有人排队.请你帮助小明设想,如果开通两个检票口,那么检票开始________分钟就没有人排队了. 【答案】3

【解析】因为每分钟有10人前来排队,所以从开始检票到没人排队的8分钟内来了10×880()8分钟一共检票的人数是25×8200(),所以原来有20080120()排队,两个窗口同时检票,每分钟可检票50人,除去每分钟来的10人,还可以检已经在排队的501040()120÷403(分钟),所以3分钟就没人排队了.

4.某医院为了提高服务质量,对病人挂号进行了调查,其调查结果为:当还未开始挂号时,N个人已经在排队等候挂号;开始挂号后,排队的人数平均每分钟增加M人.假定挂号的速度是每个窗口每分钟K个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;当同时开放两个窗口时,则15分钟恰好不会出现排队现象.根据以上信息,若医院承诺5分钟后不出现排队现象,则至少需要同时开放________个窗口. 【答案】6

【解析】设要同时开放n个窗口才能满足要求,

2

N40M40K,MK,解得5

N15M15K2,N24K,

N5M≤5Kn,即24K2K≤5Kn 解得n≥5.2

故至少需要同时开放6个窗口才能满足要求. 规律方法综合练

5.小强到学校食堂买饭,看到AB两个窗口前面排队的人一样多(设为a人,a8),就站A窗口队伍的后面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.

(1)此时,若小强继续在A窗口排队,则他到达窗口所花的时间是多少?(用含a的代数式表)

(2)此时,若小强迅速从A窗口队伍转移到B窗口后面重新排队,且到达B窗口所花的时间比继续在A窗口排队到达A窗口所花的时间少,求a的取值范围. 【答案】解:(1)他继续在A窗口排队到达窗口所花的时间为(2)

a42a8

()

44

a8a2625

,解得a20

46

a取整数,∴a20,且a为整数. 拓广探究创新练

6.春节期间,某客运站旅客流量不断增大,旅客往往需要很长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票,售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售票数3张.某一天售票厅开始用四个窗口售

票,过了a分钟售票厅大约还有320人排队等候(规定每人只购一张票) (1)a的值;


(2)若要在开始售票后半小时内让所有排队的旅客都能购到票,以便后来到站的旅客随到随购,问现在至少还需要增加几个售票窗口? 【答案】解:(1)由题意,得4004a3a320 解得a10

故所求a的值为10

(2)设需增加t个售票窗口. 由题意,得30×3(t4)≥40030×4 解得t

16

9

t为正整数,∴t的最小值为2 故至少还需增加2个售票窗口.

小结与思考



1.若mn,则下列不等式不一定成立的是( ) Am2n2 B2m2n C

m2n

2

Dm2n2 【答案】D

2.实数abc在数轴上对应的点的位置如图所示,则下列式子中正确的是(

Aacbc Bacbc Cacbc D

abcb

【答案】B

3.若关于x的方程mx12x的解为正实数,则m的取值范围是( ) Am≥2 Bm≤2 Cm2 Dm2 【答案】C

4.不等式3x81的解集在数轴上表示为( ) A B C D



【答案】B

5.不等式2x9≥3(x2)的正整数解是________ 【答案】123 6.解不等式

2x113x

2

1,并将解集表示在数轴上. )


【答案】x≤1 解集在数轴上表示略

7.若关于x的一元一次不等式组

x2m0,

有解,则m的取值范围为( )

xm2

22 Bm 33

22

Cm Dm

33

Am【答案】C

2x15x11,

8.不等式组3的所有正整数解的和为________ 2

5x23(x2)

【答案】6

x1

0,

9.解不等式组3并把解集在数轴上表示出来.

2(x5)6(x1),

【答案】不等式组的解集为-1x≤4

解集在数轴上表示略

10.某公司有AB型两种客车,它们的载客量和租金如下表.



载客量(人/辆) 租金(元/辆)

A 45 400

B 30 280

红星中学根据实际情况,计划租用AB两种型号的客车共5辆,同时送七年级师生到基地参加社会实践活动.设租用A型客车x辆,根据要求回答下列问题: (1)用含x的式子填写下表: A B

车辆数() 载客量() 租金()

x 5x

45x

400x

(2)若要保证租车费用不超过1900元,求x的最大值;

(3)(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.

【答案】解:(1)30(5x) 280(5x)


(2)根据题意,得400x280(5x)≤1900,解得x4x最大值为4 (3)(2)可知

1 6

a8a2625

,故x的值可能为01234

46

①租用A型客车0辆,B型客车5辆,租车费用为400×0280×51400()载客量为45×0

30×5150()195(),故不合题意,舍去; ②租用A型客车1辆,B型客车4辆,租车费用为400×1280×41520()载客量为45×130×4165()195(),故不合题意,舍去; ③租用A型客车2辆,B型客车3辆,租车费用为400×2280×31640()载客量为45×230×3180()195(),故不合题意,舍去; ④租用A型客车3辆,B型客车2辆,租车费用为400×3280×21760()载客量为45×330×2195(),符合题意; ⑤租用A型客车4辆,B型客车1辆,租车费用为400×4280×11880()载客量为45×430×1210(),符合题意.

故符合题意的方案有④⑤两种,最省钱的方案是租用A型客车3辆,B型客车2辆.

自我综合评价()

[测试范围:第7 一元一次不等式与不等式组]



1.若ab,则下列各式中正确的是( ) Aa<-b Ba3b3 Cab D.-3a<-3b

【答案】B

2.不等式2x5≥1的解集在数轴上表示正确的是( ) ABC



2

2

D 【答案】B

3.如图所示的两架天平都保持平衡,则对abc三种物体的质量判断正确的是( )



Aac Bac Cab Dbc 【答案】A

4.满足2(x1)≤x2的正整数x( ) A3 B4 C5 D6 【答案】B


1

x1,

5.不等式组2的解集在数轴上表示为( )

2x3

AB



C

D

【答案】C

6.如果不等式(a1)xa1的解集是x1,那么a的取值范围是( ) Aa≤1 Ba≥1 Ca1 Da0 【答案】C

x10,

7.若关于x的一元一次不等式组无解,则a的取值范围是( )

xa0

Aa≥1 Ba1 Ca1 Da<-1

【答案】A 8.已知方程组

xy1,

x2y,则a的取值范围是( )

xya,

Aa3 Ba3 Ca>-3 Da<-3

【答案】B 9.若不等式组

x1,

恰有两个整数解,则m的取值范围是( )

xm1

A.-1≤m0 B.-1m≤0 C.-1m0 D.-1m 【答案】A

10.王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳带了10元钱,则可供她选择的购买方案有(两样都买,余下的钱少于0.8)( ) A6 B7 C8 D9 【答案】B

11.当a满足条件________时,由ax8可得x【答案】a0

8 a


12.不等式组

2x37,

的解集是________

3x2

【答案】2x5

13.若关于x的方程kx12x的解为正实数,则k的取值范围是________ 【答案】k2

2x11,

14.不等式组的整数解为________

x23

【答案】01

15.若关于x的不等式3m2x5的解集是x2,则实数m的值为________ 【答案】3

16.如果不等式2xm≤0的正整数解有3个,那么m的取值范围是________ 【答案】6≤m8

17.商店为了对某种商品促销,将定价为3元的商品以下列方式优惠销售:若购买不超过5件,则按原价付款;若一次性购买5件以上,则超过部分打八折.那么用27元钱最多可以购买该商品________件. 【答案】10 18.我们定义

abcd1

adbc,例如x

2345

2553410122.若xy均为

整数,且满足1

y4

3,则xy的值是________

【答案】-33

【解析】由题意,得14xy3,即14xy3

xy3,

xy1.

xy均为整数, xy为整数, xy2

∴当x=±1时,y=±2;当x=±2时,y=±1 xy213xy=-21=-3

19.解不等式

2x13x2

1,并把解集表示在数轴上. 34

【答案】x≥2 解集在数轴上表示略

4(x1)7x10,

20.解不等式组并写出它的非负整数解. x8

x5,3

【答案】不等式组的解集为2x

7

非负整数解为0123 2


21.已知关于x的方程2xax3的解是不等式5(x2)76(x1)8的最小整数解,求代数式4a

14

的值. a

【答案】解:解不等式5(x2)76(x1)8 x>-3

因此不等式5(x2)76(x1)8的最小整数解是-2 从而可知关于x的方程2xax3的解是x=-2

x=-2代入方程2xax3,得(2)(2)×a3,解得aa

7

2

71472时,代数式4a41414410 2a27

22为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序

推进.花城新区建设某工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作.租赁公司提供的挖掘机有关信息如下表所示:



租金

(单位:元/台·时)

100 120

挖掘土石方量 (单位:m/)

60 80

3

甲型挖掘机 乙型挖掘机

(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?

(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租赁方案?

【答案】解:(1)设甲、乙两种型号的挖掘机各需x台、y台,根据题意,

xy8,

60x80y540.

x5,解得

y3.

答:甲、乙两种型号的挖掘机各需5台、3台. (2)设租用甲型号的挖掘机m台,则租用乙型号的挖掘机

54060m

台,根据题意,得

80

100m120

54060m

850

80

54060m

80

解得m≤4又∵m为非负整数,m01234m01234分别代入可知,只有当m1时,

54060m

6,为整数,符合题意.∴符合条件的租赁方案只有

80

一种,即租用甲型号的挖掘机1台,乙型号的挖掘机6台. 23.先阅读下面的例题,再按要求完成下列问题.


例:解不等式(x2)(x1)0

解:由有理数的乘法法则“两数相乘,同号得正”,有解不等式组①,得x2 解不等式组②,得x<-1

所以不等式(x2)(x1)0的解集为x2x<-1

x20,x20,



x10x10.

5x15x1

0(2)0

2x32x3

5x1

【答案】解:(1)0

2x3

解不等式:(1)得①

5x10,5x10,

或②

2x30.2x30

31

,解②得x 25

31

所以不等式的解集为xx

25

5x1(2)0

2x3

解①得x得①

5x10,5x10,

或②

2x30.2x30

13

x;解②得无解. 52

13

所以不等式的解集为x

52

解①得

8 整式乘法与因式分解

81 幂的运算 1.同底数幂的乘法

知识要点分类练

1.计算1010的结果是( )

A10 B10 C10 D10 【答案】B

2.计算xx的结果是( )

Ax Bx Cx Dx 【答案】B

3.下列计算结果为m的是( )

14

5

6

8

9

2

4

4

5

6

8

2

3


Am2m7 Bm7m7

Cmm6m7 Dmm8m6

【答案】C

4.计算:(3)(3)2

(3)3

22

2

________ 【答案】(3)6

2





5.下面计算正确的是( )

A(yx)(yx)2

(yx)3

(xy)6

B(xy)2

(yx)3

(xy)5

C(xy)(yx)3

(xy)2

(xy)6

D(xy)5

(yx)2

(xy)7

【答案】A

6.计算:(1)715

3(3

)________

【答案】(112

3

)

7.计算:

(1)a5

(a)2

(a)3

(2)aa2

(a)3

(a)4

【答案】(1)a10

(2)a10



8.若3x

a3y

b,则3xy

________

【答案】ab

9.已知am

2an

5,求amn

的值.

【答案】10

规律方法综合练 10.等式x2

x

()

x5中,括号里应填写的数字是( A.-3 B3 C7 D10

)


【答案】B 11.若22×1622m,则m的值为( ) A3 B4 C5 D6 【答案】B

【解析】∵42162222282m,∴m4 12.若x

n3

2

2

2

4

8

2m



xn3x10,则n________

【答案】5

13.计算:(1)(2ab)(2ab)(2ab) (2)(xy)(yx) 【答案】(1)(2ab) (2)(xy)

14.已知2162n4,求2mn的值.

m5

6

3

2

2

3

【答案】解:因为2162n4 所以2

mn

m

2m2n16464

拓广探究创新练

15.如果mn是正整数,且3327,试求m的值. 【答案】解:因为33273 所以mn3.又因为mn是正整数, 所以当m1时,n2,此时m11 m2时,n1,此时m22

2.幂的乘方与积的乘方 1课时 幂的乘方

知识要点分类练

1.计算(a)的正确结果是( ) A3a Ba Ca D6a 【答案】B

2.下列运算正确的是( )

2

6

5

23

mnn

mn3

n2

n1


Axxx B(x)x Cxxx Dxxx 【答案】A

3.下列各式的计算结果是a的是( ) A(a) B(a) Caa Daa 【答案】A 4.计算:

5653

(1)(10) (2)(a) (3)(a)

3432

33

33

6

325

5510

633

6

3323

【答案】(1)10 (2)a (3)a

5.一个正方体的棱长是10cm,求它的体积. 【答案】10cm

6.填空:(________)a 【答案】a 7.若a

3n

3

2

6

123015

2

63

4,则a6n________

【答案】16

8.计算(a)a的结果是( )

Aa Ba Ca Da 【答案】B

9.计算:(10)10________ 【答案】10 10.计算:

14

34

2

32

3

891011


(1)(a)(a)(a)(a) (2)(a)(a)(a) 【答案】(1)0 (2)a

11.已知3927813,求m的值. 【答案】m3 规律方法综合练

12.若10m10n,则10A2m3n Bmn C6mn Dmn 【答案】D 13.若x

2n232

2x

y

2x3y

m

m

m

m

30

17

5

23

32

23455244

( )

16,那么xn________

【答案】±4

14.若2x5y30,求432的值.

【答案】解:因为2x5y30,所以2x5y3 因为432(2)(2)2所以4322

x

y

2x5y

x

y

2x

5y

2x

xy

25y22x5y

238

拓广探究创新练

15.阅读下列解题过程: 试比较2

100

3的大小.

75

解:因为2

100

(24)251625375(33)252725,且1627,所以2100375

555

试根据上述解答过程解决问题:比较2【答案】解:因为26481,所以2知识要点分类练

555

3

444

4

333

的大小.

(25)111321113444(34)11181114333(43)11164111,且32

555

43333444

2课时 积的乘方


1.计算(a)的结果是( ) Aa Ba Ca Da 【答案】D

2.计算(ab)的结果是( ) Aab Bab Cab Dab 【答案】A

3.下列运算正确的是( )

22

aa A2aa3a B(a)?

2

3

2

3

23

55

66

6323

536

aa D(3a3)327a6 C(a)?

【答案】B

4.计算(210)的结果是( ) A610 B810 C210 D810 【答案】D

5.下列各式所求结果为9xy的是( )

322

A(3xy) B(3xy)

4

226

4

63

326

99

1818

C(3xy) D(3xy) 【答案】D 6.若(2ab

mmn3

362322

)8a9b15成立,则m________n________

【答案】3 2

7.计算:8

2014

(0.125)2015________

【答案】

8.计算(2a)3a的结果是( )

2

2

18


Aa Ba C5a D5a 【答案】B

9.计算:(6x)(x)x 【答案】35x 规律方法综合练

22

10(ab)ab(4ab)12ab(2x)16x

3

33

34

12

32

5

22

22

6



28

(a)3a3.其中正确的有( ) 33

A0 B1 C2 D3 【答案】A

2

11.若(ab)ab,则m2n的值是( )

mn2

86

A10 B20 C32 D52 【答案】A

12.若5a4b,则20的值是________ 【答案】ab 13.计算:

(1)aaa(a)(2a) (2)(9)()() 【答案】(1)10a (2)8

3nn

14.已知x5y3,求(xy)的值.

n

2

3

32

23

nnn

3

23

3

13

3

6

n

【答案】解:∵x5y3,∴(xy)

n3n

x3ny3n(xnyn)3(53)33375

拓广探究创新练

15.同学们,我们学习了“积的乘方”这个知识点,知道(3b)9b,请你用几何图形直观地解释这个式子.

2222

【答案】解:如图,∵S正方形ABCD(3b),又S正方形ABCD9b,∴(3b)9b

22




3.同底数幂的除法 1课时 同底数幂的除法

知识要点分类练

1.计算xx的结果是( ) Ax B4x Cx D【答案】C

2.计算(a)(a)的结果是( ) Aa Ba Ca Da 【答案】C

3.计算(a)(a)的结果是( ) Aa Ba Ca Da 【答案】B

4.下列运算正确的是( )

236

Axxx B(x)x

33

9

23

22

6

2

82

46

1x 4

2442

234

Cxxx Dxxx 【答案】B

5.计算:xxx________ 【答案】x

6.计算:(ax)(ax)________ 【答案】ax

2

25

3

10

4

2

224632

4




7.若m22,则m等于( ) A2 B4 C6 D8 【答案】D

8.算式3mn? 3m2,括号中的代数式是( ) A3C3

mn2

3

6

B3 D3

n2



mn3n2

【答案】D

9.如果x3x2,那么x

m

n

mn

的值是( )

A1.5 B6 C8 D9 【答案】A

10.若a2016a1,则a【答案】2016 规律方法综合练

11.下列计算错误的是( ) Abbb B(b)bb C(bc)(bc)bc D(bx)(bx)bx 【答案】A

12.若3497,则3A

x

y

x2y

33

3

2

6

8

4

44

82

8

8

mnm4n

________

842

的值为( )

472 B C.-3 D 747

m

n

2m4n1

【答案】A

13.若46162,则4【答案】36 14.计算:

(1)xyxyxy (2)(xy)(yx)(xy) 【答案】(1)xy

10

4

2

________

53


(2)(xy)

15.若2345,求2x2y的值.

x

y

8

【答案】解:2

x2y

3

2x22y2x4y35

5

10x

16.已知5x3y20,求10

106y的值.

【答案】解:由5x3y20,得5x3y2 1010

10x

106y1010x6y102(5x3y)1022104 106y的值是104

10x

拓广探究创新练

17.若23262z12,求xyz之间的数量关系.

x

y

17【答案】解:因为2y2x2yx2

2z2y2zy2,所以2yx2zy

yxzy,所以2yxz

2课时 零指数幂和负整数指数幂

知识要点分类练

1.计算1的结果为( )

A1 B.-1 C0 D.无意义 【答案】A

2.计算()的结果为( ) A.-2 B2 C1 D.-1 【答案】D

3.若(x1)1,则x的取值范围是________;当x________时,(x4)1 【答案】x1 ±2 4.如果3【答案】

2x3

0

2

0

0

12

0

1,那么x2________

9 4

13

0

5.计算:

(1)(3) (2)()(8) (3)5

2m

0

12

0

52m (4)amnamn(a≠0)


【答案】(1)1 (2)0 (3)1 (4)1

6.计算22的结果为( ) A

11

B2 C D4 44

2

【答案】A 7.计算:0.5

( )

A1 B4 C.-4 D0.25 【答案】B

8.用分数或整数表示下列各负整数指数幂的值. (1)10 (2)0.5 (3)3

3

34

【答案】(1)

11

(2)8 (3)

811000

0

3

2

9.计算:32(3)() 【答案】5

14

1

7 8

3

10.计算:(3)()|4|2016 【答案】-240π 规律方法综合练

11.下列代数式的值不能等于零的是( ) Aa Ba Ca D|a|

【答案】B



12.若a2m25,则am等于________ 【答案】 13.若3

x2

0

13

20

15

1

,则x________ 27

【答案】-3



14.若实数mn满足|m2|(n2016)20,则m1n0________ 【答案】

3 2

15.分别指出当x取何值时,下列各等式成立. (1)

1

2x(2)10x0.01(3)0.1x100 32

【答案】(1)x=-5 (2)x=-2 (3)x=-2


16.已知x1

x2

1,求整数x

【答案】解:①当x20x1≠0时,得x=-2 ②当x11时,x2

③当x1=-1时,x0x2为偶数. 所以整数x为-202 拓广探究创新练

17.已知S121

22

23

2

2016

,求S的值.

【答案】解:S121

22

23

22016

,①

①式两边同乘以2,得

2S21212222015,②

由②-①,得S2

122016



3课时 科学记数法表示绝对值小于1的数

知识要点分类练

1.数据0.0000314科学记数法表示为( ) A31.4104 B3.14105

C3.14106 D0.314106

【答案】B

2.用科学记数法表示下列各数: (1)0.0021 (2)0.0001

(3)0.000305 (4)0.00000008 【答案】(1)2.1103

(2)1104

(3)3.05104

(4)8108



3.若某种细胞的直径是5104

毫米,则这个数是( ) A0.05毫米 B0.005毫米 C0.0005毫米 D0.00005毫米 【答案】C

4.已知空气的单位体积质量为1.24103

克/厘米3

1.24103

用小数表示为( )


A0.000124 B0.0124 C.-0.00124 D0.00124 【答案】D

5.用小数表示数3.81610________ 【答案】-0.003816

6.写出下列各数的原数: (1)1.3510 (2)5.010

【答案】(1)0.00000135 (2)0.005

7.某种计算机完成一次基本运算的时间约为0.000000001s,把0.000000001s科学记数法表示为( )

A0.110s B0.110s C110s D110s

【答案】D

8PM2.5是指大气中直径≤0.0000025米的颗粒物,0.0000025科学记数法表示为( ) A2.510 B2.510 C2510 D0.2510

【答案】B

9.某种生物孢子的直径为0.00058m,把0.00058科学记数法表示为________ 【答案】5.810 规律方法综合练

101纳米10,将0.00305纳米用科学记数法表示为________米. 【答案】3.0510

129

3

63

89

89

76

75

4



11.一根头发丝的直径为6nm(纳米),某种生物细胞的直径为1μm(微米).请你选择适当

9

的方法说明两者之间的差距(1nm10m1m10m)

6

【答案】解:因为6nm61010m610m 所以610

5

495

(1106)6105660,即一根头发丝的直径是该种生物细胞直径的60

倍.

拓广探究创新练

12许多同学都认为1粒米微不足道,平时总会在饭桌上不经意地掉几粒米,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食的现象,老师组织同学们进行了实际测算,


500粒大米的质量约为11克,现在请你计算1粒大米约多少千克(科学记数法表示) 【答案】解:115002.210()

2

2.21022.2105千克

答:1粒大米约2.210千克.

周滚动练习() [测试范围:81]



1.计算aa的结果是( )

Aa Ba C2a Da 【答案】B

2.计算(ab)的结果是( )

A2ab Bab Cab Dab 【答案】C

3.下列式子中,正确的是( )

336

Axxx B42 523

C(xy)xy Dyyy

32

62

5

32

653

2222

【答案】D

4.下列运算正确的是( )

339

A(x)x B(2x)6x

3

3

C2xxx Dxxx 【答案】A

5.下列运算正确的是( ) AxxC()

1

2632

0 B(3.14)01

12

1

2 D326

【答案】B

6.计算(3ab)的结果是( ) A81ab B12ab C12ab D81ab

67

812

812

67

234


【答案】D

7.计算(mnp)(pmn)(mpn)(pnm)的结果是( ) A(mnp)(pnm) B(mnp)(mnp) C(mnp) D(mnp) 【答案】A

mn

8.若a328,则(a)等于( )

mn

882

6

2

6

4

2

A9 B24 C27 D11 【答案】C

9.设a2b(3)c

0

2

3

1

9d()1,则abcd按由小到大的顺序排列正

2

确的是( )

Acadb Bbdac Cacdb Dbcad 【答案】A

10.计算:101010【答案】10

2020

3

2016

________



11微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.0000007平方毫米,用科学记数法表示为________平方毫米. 【答案】710

12.计算(m)(m)的结果是________ 【答案】m

13.若(x4)有意义,则x________ 【答案】±4 14.若(x)2【答案】-6

15.已知n为自然数,ab

n

n

35

152

4

7

6

0

315,则x________

,当b210时,a________

5


【答案】

a

1

105 2

16.若232b12,则ab之间的关系可用一个等式来表示:________ 【答案】ba2

17.写出一个运算结果是a的算式:________ 【答案】答案不唯一,如aa

18.计算: (1)()()

2

46

12

3

12

2

a (2)(a)?

(3)(x2y)(2yx) (4)[(xy)](xy)【答案】(1)

52n4

2n1

2

3

34



17

(2)a 32

6n1

(3)(2yx) (4)(xy)19.计算: (1)(4)

2016



0.252015

32

(2)[()](2) 【答案】(1)4 (2)

12

26

1 64

3m

20.已知an3am2,求a2n【答案】a

2n3m

的值.

72

2

0

21.计算:(2)|1|(2016)() 【答案】0

22.先化简,再求值:(x)x(x)(x)x,其中x=-1 【答案】解:(x)x(x)(x)x

32

5

2

2

3

32

5

2

2

3

12

1

x6x5x2x2x3

xx 2x


x=-1时,原式=(1)=-2

231kg镭完全蜕变后,放出的热量相当于3.7510kg煤燃烧放出的热量.据统计,地壳里含110kg的镭,试问:这些镭完全蜕变后放出的热量相当于多少千克煤燃烧放出的热量?

【答案】解:3.75101103.75(1010)

5

10

5

10

10

5

3.751015(kg)

答:这些镭完全蜕变后放出的热量相当于3.7510kg煤燃烧放出的热量.

82 整式乘法

1.单项式与单项式相乘 1课时 单项式与单项式相乘

知识要点分类练

1.计算3a·2b的结果是( )

A3ab B6a C6ab D5ab 【答案】C

2.计算3x2x的结果是( ) A5x B6x C5x D6x 【答案】B

3.计算:2mm________ 【答案】2m

4.计算:(510)(410)________(科学记数法表示) 【答案】210

5.计算y(xy)的结果是( ) Axy Bxy Cxy Dxy 【答案】B 6.计算:

3

8

4

12

310

2

8

2

328

4

2

8

15

32

55

69

10

13


(1)

123

xyx3y(xy2z)2 332

2

3

32

(2)(xy)(2xy) 【答案】(1)

1662

xyx (2)4x8y9 2

12

a,则它的面积为________ 2

规律方法综合练

7.若一个三角形的底边长为4a,底边上的高为【答案】a

8.若单项式3xy2xy的积为mxy,则mn________ 【答案】-2

9.某学校的长方形操场的长是4a米,宽是3a米. (1)求操场的面积是多少平方米;

(2)a60时,操场的面积是多少平方米? 【答案】(1)12a (2)43200

10.阅读下列解答过程,在括号中填入恰当的内容.

2

2

22

3

3

5

n

3

(2a2b)2(3a3b2)3 (6a5b3)6 (6)6(a5)6(b3)6

46656a30b18

上述过程中,有无错误?答:________,错在第________步,原因是________,请写出正确的解答过程.

【答案】解:有错误 弄错了乘方和乘法的运算顺序

正确的解答过程:(2ab)(3ab)4ab27ab108ab

拓广探究创新练

11.一住户的住房结构示意图如图所示(单位:米),这家主人打算把卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果某种地砖的价格是a元/米2,那么购买地砖至少需要多少元?

2

2

323

42

96

138




【答案】解:因为卫生间面积=mn平方米,厨房面积=2mn平方米,客厅面积=8mn平方米,所以卧室以外的面积=mn2mn8mn11mn(),即至少需要11mn的地砖;如果某种地砖的价格是a元/米,那么购买地砖至少需要11amn元.

2课时 单项式除以单项式

知识要点分类练

1.计算(4x)2x的结果正确的是( ) A2x B2x C2x D8x 【答案】A

2.计算(x)(x)的结果是( ) A.-x Bx Cx Dx 【答案】A

3.若3xy3xy,则“”内应填的单项式是( ) Axy B3xy Cx D3x 【答案】C

4.计算:(910)(310)________ 【答案】-30

5.计算下列各题: (1)9abc2ab (2)(4ab)8ab 【答案】(1)

532

237

6

2

3

2

3

22

2

2234

55

4323

92

ac (2)2a8b3 2




6.地球赤道长约为410千米,我国最长的河流——长江全长约为6.310千米,赤道长约等于长江长的( )

A7 B6 C5 D4 【答案】B

720133月,我国发射的“高分一号”实验卫星进入预定轨道后,210秒走过的路程1.5810米,那么该卫星绕地球运行的速度是多少? 【答案】该卫星绕地球运行的速度为7.910米/秒 规律方法综合练 8.计算结果等于aAaa

m

43

2

7

4

m2n3p

的是( )

m2n

a3p Bam(a3pa2n) a3p) Dama3pa2n

Ca(a【答案】C 9.计算: (1)

2n

552310231

abc(abc)(ab) 332

2

2

(2)2xy(3xy)(xy)

12

abc) 2

43232

【答案】(1)a (2)6x (3)abc

3

(3)6abc3ab?(

432

23

拓广探究创新练

10.计算机处理数字量极大,一般用KBMBGB作储存容量的计量单位,它们之间的1MB1.02410KB1GB1.02410MB

3

3

8.388608107KB,则它相当于多少GB

【答案】解:因为1GB1.024101.02410KB1.04857610KB 所以8.38860810(1.04857610)80(GB)

2.单项式与多项式相乘 1课时 单项式与多项式相乘

知识要点分类练

1.下列运算正确的是( )

7

6

336


A.-3(x1)=-3x1 B.-3(x1)=-3x1 C.-3(x1)=-3x3 D.-3(x1)=-3x3 【答案】D

2.计算2x(3x1),正确的结果是( ) A5x2x B6x1 C6x2x D6x2x

【答案】C

3.今天数学课上,老师讲了单项式乘以多项式,放学后,小华回到家拿出课堂笔记,认真

3

2

3

3

2

3xy(4y2x1)12xy26x2y________,空格的地方被墨水弄污了,你认为横线

上应填写( )

A3xy B(3xy) C(1) D1 【答案】A 4.计算:

(1)2a(3ab5ab) (2)(3xy2x1)(2xy) (3)(

22

2

3

132

xy)(3xy4xy21) 2

32

33

【答案】(1)6ab10ab (2)6xy4xy2xy (3)

3

2

2

3371

xyx3y8x2y6 44

2

2

规律方法综合练

5.如果一个三角形的底边长为2xyxyy,底边上的高为6xy,那么这个三角形的面积( )

A6xy3xy3xy B6xy3xy3xy C12xy6xy6xy D6xy3xy

3

2

2

3

2

2

2

3

3

2

3

3

2

2

2

3


【答案】A

4

6.要使(xax1)(6x)的展开式中不含x项,则a应等于________

2

3

【答案】0

7.先化简,再求值:2x(3x4x1)3x(2x3),其中x=-1 【答案】解:原式6x8x2x6x9xx2x x=-1时,原式(1)2(1)3

8.已知圆柱的底面半径为x,高为2x4,求它的体积. 【答案】解:根据公式,它的体积为x(2x4)2x4x

9.已知(mx)(x)n(xm)x5x6对于任意数x都成立,求m(n1)n(m1)的值.

【答案】-7 拓广探究创新练

10.某同学在计算一个多项式乘以3x时,因抄错运算符号,算成了加上3x,得到的结果是x4x1,那么正确的计算结果是多少?

【答案】解:这个多项式是(x4x1)(3x)4x4x1 正确的计算结果是(4x4x1)(3x)12x12x3x

2课时 多项式除以单项式

知识要点分类练

1.计算(6ab8b2b的结果是( ) A3ab4b B3a4b C3ab4 D3a4 【答案】D

2.计算(6x5x3x)(3x)的结果是( )

4

3

2

2

4

3

2

2

2

2

2

2

3

2

22

2

32322

22

2

52

x1 3

525233

C2xx1 D2xx

33

A2x5x3x B2x

3

2

3

【答案】C

3.下列各式,计算结果错误的是( ) A(3xyyy3x1 B(5mn6m)3m

32

2

322

mn2m 5


C(9xy6xy)3xy3x2y D(mambmcmabc 【答案】B

4.计算:(16ab8ab4ab)(4ab)________ 【答案】4b2a1

5.计算:(4xy2xy)(2xy) 【答案】2xyx 规律方法综合练

6.若一个长方形的面积为4a6ab2a,它的长为2a,则宽为( ) A2a3b B4a6b

C2a3b1 D4a6b2 【答案】C

7若一个长方形的面积为(6ab4ab)cm一边长为2abcm则它的周长为________cm 【答案】(6b4a4ab) 8.计算:[x(x2x3)3x]【答案】2x4

9.先化简,再求值:

(1)(28a28a7a)7a,其中a

3

2

2

2

2

22

2

3

24

42

22

22

22

22

2

2

12

x 2

3 4

31时,原式 44

(2)[5x(3x2y)2y(3x2y)x(x2y)2y(x2y)]÷4x,其中x2y=-3 【答案】(1)原式4a4a1 a

2

(2)原式=4(xy) x2y=-3时,原式=-4

拓广探究创新练

10x2015y2016

[2x(x2yxy2)xy(2xyx2)]x2y的值.”题目出完后,小明说:“老师给的条件y

2016是多余的.”小颖说:“不给这个条件,就不能求出结果,所以不是多余的.”你认为他们谁说得有道理,为什么?



原式(2x3y2x2y22x2y2x3y)x2yx3yx2yxx2015

2015.显然化简后的结果不含有字母y,所以最后的结果与y的值无关,所以小明说得有道理.

3.多项式与多项式相乘

知识要点分类练




1.计算(x1)(2x3)的结果是( ) A2xx3 B2xx3 C2xx3 Dx2x3 【答案】A

2.计算结果是a3a40的是( ) A(a4)(a10) B(a4)(a10) C(a5)(a8) D(a8)(a5) 【答案】D

3.下列各式:①(a2b)(3ab)3a5ab2b (2x1)(2x1)4xx1 (xy)(xy)xy (3x6)(x2)3x6x12

其中计算正确的有( ) A1 B2 C3 D4 【答案】B

4.把图左框里的整式分别乘以(a2b)所得的积写在右框相应的位置上.

22

22

2

2

22

22

2



【答案】a4ab4b a4b a4b aab6b 5.计算:

(1)(4y1)(y5) (2)(x2y)(3x4y) (3)(x2)(x2x4)

23

【答案】(1)4y19y5 (2)3x2xy8y (3)x8

2

2

2

22222222

规律方法综合练

6.若一个长方体的长、宽、高分别是3x42x1x,则它的体积是________ 【答案】6x11x4x

7.若三角形的一边长为2mn,这边上的高为3m2n,则这个三角形的面积为________

3

2


【答案】3m

2

1

mnn2 2

8.如图是一个长方形,请你仔细观察图形,写出图形中所表示的整式的乘法关系式是________



【答案】(2ab)(2ba)2a5ab2b

9.当x7时,求代数式(2x5)(x1)(x3)(x1)的值. 【答案】解:(2x5)(x1)(x3)(x1)

2

2

2x27x5(x22x3)

2x27x5x22x3 x29x8

x7时,原式797849638120

拓广探究创新练

10.如图,有长方形和正方形卡片若干张,图甲是选取了2张不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(ab)aab成立. (1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式:________

(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.

2

2



【答案】解:(1)(a2b)(ab)a3ab2b

(2)如图所示,恒等式是(ab)(ab)a2abb(答案不唯一)

2

2

2

2




专题训练() 整式乘法中的数学思想方法



1.若(x3)(2xn)2xmx15,则mn的值分别是( ) A.-15 B15 C.-1,-5 D1,-5 【答案】B 2.如果单项式3x【答案】xy 3.若(a

m1n2

6

4

4ab

2

1

y2x3yab是同类项,那么这两个单项式的积是________

3

b

)(a2mb2n1)a4b7,则mn________

【答案】3

4.若x(xa)3x2bx6x4成立,试求ab的值. 【答案】a9b2

5.若xmxnx2x1的乘积中不含有x项和x项,求mn的值. 【答案】m

2

3

3

2

2

3

1

n=-2 2



6.把三张大小相同的长方形卡片ABC叠放在一个底面为长方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图①摆放,则阴影部分的面积为S1;若按图②摆放,则阴影部分的面积为S2,则( )



AS1S2 BS1S2


CS1S2 D.无法确定

【答案】B

7.如图,长方形ABCD的面积为________(用含x的代数式表示)



【答案】x5x6

8.两个边长为a的正方形和两个长为a、宽为b的长方方形如图摆放,组成一个大长方形,通过计算该图形的面积可得到的代数恒等式是________

2



【答案】2a(ab)2a2ab

9.如图,已知正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼成一个长为(a2b)、宽为(ab)的大长方形,则需要A类卡片________张,B类卡片________张,C类卡________张.

2



【答案】1 2 3

10.如图,在长为a、宽为b的长方形场地中,横向有两条宽均为n的长方形草坪,纵向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积是________(用含abmn的代数式表示)



【答案】(b2n)(am)

11.计算下列各式,然后回答问题:(x3)(x4)________(x3)(x4)________(x


3)(x4)________(x3)(x4)________ (1)根据以上计算总结规律;

(2)运用(1)中的规律,直接写出结果: (x25)(x16)________

【答案】x7x12 xx12 xx12 x7x12 (1)(xm)(xn)x2(mn)xmn (2)x9x400

12.观察以下等式:(x1)(xx1)x1

2

3

2222

2

(x3)(x23x9)x327 (x6)(x26x36)x3216



(1)按以上等式的规律,填空:(ab)(________)ab (2)利用多项式的乘法法则,说明(1)中的等式成立;

(3)利用(1)中的公式化简:(xy)(xxyy)(xy)(xxyy) 【答案】解:(1)aabb (2)(ab)(aabb)

2

2

2

2

2

2

3

3

22

a3a2bab2a2bab2b3 a3b3

(3)(xy)(xxyy)(xy)(xxyy)

2

2

2

2

x3y3(x3y3)2y3

13.发现公式需要一个过程,下面让我们一起探索这个过程.多项式乘以多项式大家都会,下面我们尝试利用列表法试一试. 计算:(x1)(x2) × x

x

2 2x

x2

1 x 2

结果为xx2.根据所学完成下列问题.

2


(1)计算:(x2)(x2x4)(m3)(m3m9),先填表再直接写出结果: × x 2

22

x2 2x 4







结果为________ × m 3

m2 3m 9







结果为________

(2)根据以上获得的经验填表: ×





3

3



3

3





结果为

,根据以上探索,用字母ab表示发现的公式为________

(3)用公式计算:

(2x3y)(4x26xy9y2)________

【答案】解:(1) × x2 2x 4 x

x3 2x2 4x

2 2x2 4x 8 结果为x8 × m 3

3

m2

3m 9

m3 3m2 9m

3m2 9m 27

3

结果为m27


(2) ×

2 3

○△

-○△

2

2

2





3



2

2

3

3

用字母ab表示发现的公式为(ab)(aabb)ab (3)(2x3y)(4x6xy9y)8x27y

83 完全平方公式与平方差公式 1课时 完全平方公式的认识

知识要点分类练

1.计算(x2)的结果为xx4,则“”中的数为( ) A.-2 B2 C.-4 D4 【答案】D

2.下列计算正确的是( ) A(xy)xy B(xy)x2xyy C(xy)x2xyy D(xy)x2xyy 【答案】C

3小明计算一个二项式的平方时,得到正确结果为a10ab但最后一项不慎被污染了,这一项应是( )

A5b B5b C25b D100b 【答案】C

4.利用完全平方公式计算: (1)(1a) (2)(x2y) (3)(2x3y) (4)(2t1) 【答案】(1)12aa (2)x4xy4y

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

3

3

2

2

222

2


(3)4x12xy9y (4)4t4t1 规律方法综合练

5.多项式4x1加上一个单项式后,使它能成为一个整式的平方,则加上的单项式不可以( )

A4x B.-4x C4x D4x 【答案】D

6.化简:(ab)(ab)a(14b)________

【答案】a

7.三种不同类型的长方形地砖的长、宽如图所示,若现有A4块,B4块,C2块,要拼成一个正方形,则多余出1________型地砖;这样的地砖拼法表示了一个完全平方公式,则这个完全平方公式是________

2

2

22

2

2

44



【答案】C (2mn)4m4mnn

8(1)比较ab2ab的大小(用“>”“<”或“=”填空) ①当a3b2时,ab________2ab ②当a=-1b=-1时,ab________2ab ③当a1b2时,ab________2ab

(2)猜想ab2ab有怎样的大小关系?并说明你的结论. 【答案】解:(1)①> ②= ③>

22

(2)猜想:ab2ab.说明:∵ab2ab(ab)0

2

2

2

2

22

2

2

2

2

2

2

22

22

ab2ab

拓广探究创新练

9(1)多项式x21加上一个整式后是含x的二项式的完全平方式,完成下列填空: x1________(x1) x1________(x1)

2

2

2

2

22


x1________(x1)

(2)已知整式4x9,若再添加一个单项式使这三个整式能组成完全平方式,请写出这个单项式的所有可能情况.

2

2

12

22

14x 9

44

(2)这个单项式可以是12x,-12xx

9

【答案】(1)2x (2x)

2课时 完全平方公式的应用

知识要点分类练

1.计算:2016403220152015( ) A1 B2 C3 D4 【答案】A

2.利用完全平方公式进行计算: (1)301 (2) 999

【答案】(1)90601 (2)998001

3.如图,从边长为(a1)cm的正方形纸片中剪去一个边长为(a1)cm的正方形(a1),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )

2

2

2

2



A2cm B2acm

2

C4acm D(a1)cm

2

2

22

【答案】C

22

4.若(mn)8(mn)4,则mn( )

2

2

A32 B12 C6 D2 【答案】C

5.如果(ab)加上一个单项式后等于(ab),那么这个单项式是( ) A2ab B.-2ab C4ab D.-4ab 【答案】C 6.计算: (1)(xyz)

22

2


(2)(xy)

【答案】(1)xyz2xy2xz2yz (2)x3xy3xyy 规律方法综合练

7.若xy8xy5,则xy的值是( ) A84 B74 C64 D54 【答案】D

2

2

3

2

2

3

2

2

2

3

a2b2

ab的值为( ) 8.当a(a1)(ab)2时,式子

2

2

A.-2 B2 C4 D8 【答案】B

9.若n满足(n2015)(2016n)1,则式子(2016n)(n2015)等于________ 【答案】0

【解析】设2016nan2015b,则ab1ab1

2

2

2

2

(ab)2(a2b2)

0 因为(ab)(ab)2ab,所以ab

2

2

2

2

拓广探究创新练

10.阅读下列材料并解答后面的问题:利用完全平方公式(ab)a2abb,通过配

22

方可对ab进行适当的变形,如ab(ab)2abab(ab)2ab

2

2

2

2

2

2

2

2

2

从而使某些问题得到解决.

例:已知ab5ab3,求ab的值. 解:ab(ab)2ab52319 通过对例题的理解解决下列问题: (1)a

2

2

2

2

22

11

6,则a22________ aa

2

2

4

4

(2)已知ab2ab3,分别求abab的值. 【答案】解:(1)a

2

2

2

2

1121

(a)2a62234 2aaa

2

(2)ab(ab)2ab22310


a4b4(a2b2)22a2b21022321001882

3课时 平方差公式

知识要点分类练

1.下列各式中,不能用平方差公式计算的是( ) A(xy)(xy) B(xy)(xy) C(xy)(xy) D(xy)(xy) 【答案】A

2.下列运用平方差公式计算错误的是( ) A(ab)(ab)ab B(x1)(x1)x1 C(2x1)(2x1)2x1 D(ab)(ab)ab 【答案】C

3.下列式子总能成立的是( ) A(a1)a1 B(a1)aa1 C(a1)(a1)aa1 D(a1)(1a)1a 【答案】D

4.计算下列各式,其结果是4y1的是( ) A(2y1)(2y1) B(2y1) C(4y1) D(2y1)(2y1)

【答案】A

5.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m则改造后的长方形草坪面积与原来正方形草坪面积相比( ) A.增加6m B.增加9m C.减少9m D.保持不变 【答案】C

6.若mn2mn5,则mn的值为________

2

2

22

2

2

2

2

22

2

2

2

2

2

2

222

2


【答案】10

7.当x3y1时,代数式(xy)(xy)y的值是________ 【答案】9 8.计算:

(1)(3b2a)(2a3b) (2)(3m2n)(3m2n) (3)(xy5)(xy5) 【答案】(1)4a9b (2)4n9m (3)25xy

规律方法综合练

9.计算(xy)(yx)的结果是( )

22

Axy Bxy

2

2

2

2

2

22

22

Cxy Dxy 【答案】B

2222

11

ab,则ab的值为( ) 42

11

A B C1 D2

22

10.若ab

2

2

【答案】B

11.计算(x1)(x1)(x1)的结果是( ) Ax1 Bx1 C(x1) D(x1)

【答案】B

12.计算:(x2y3z)(x2y3z)________ 【答案】x4y12yz9z

【解析】根据多项式的特点,合理分组,再用乘法公式逐步计算. 原式=[x(2y3z)][x(2y3z)]

2

2

2

8

8

2

44

x2(2y3z)2 x2(4y212yz9z2) x24y212yz9z2


13(1)如图①,图中阴影部分的面积是________(写成两数平方差的形式)

(2)如图②,若将阴影部分裁剪下来,重新拼成一个长方形,则它的宽是________,长是________,面积是________(写成多项式乘法的形式) (3)比较两图中阴影部分的面积,可以得到什么结论?



【答案】(1)ab

2

2

(2)ab ab (ab)(ab) (3)(ab)(ab)ab 拓广探究创新练

14.某同学在计算3(41)(41)时,把3写成(41)后,发现可以连续运用两数和乘以这



















2

2

2

3(41)(421)4141(421)(421)(421)1621255 11111

)(1)(1)24815

22222111111

【答案】解:原式2(1)(1)(12)(14)(18)15

222222

11

2(116)152

22

请借鉴该同学的经验,计算:(1)(1

专题训练() 灵活运用乘法公式解题



1.计算:(1)(a2b)(a2b) (2)(2x3y)(2x03y) (3)(2x

12

y) 2

2

2

【答案】(1)a4b (2)4x9y (3)4x2xy

22

2

12y 4

2

2

2

2.计算:(1)(x1)4x (2)(2x1)(2x5)(2x5)

2


(3)(xy)4(xy)(xy)4(xy) 【答案】(1)x2x1 (2)4x26 (3)x6xy9y



3.计算:(1)(2xy)(2xy) (2)(2x)(2x) (3)(2a3b) 【答案】(1)y4x (2)4x

2

2

2

2

2

2

22

42

12

22

12

4

1 4

2

(3)9b12ab4a



4.计算:(1)(ab3)(ab3) (2)(a2b3c)(a2b3c) 【答案】(1)ab6b9 (2)a4b12bc9c

5.计算:(1)(ab)(ab)(ab)(ab) (2)(3m4n)(3m4n)(9m16n) 【答案】(1)ab (2)81m256n

6.计算:(ab)(ab) 【答案】4ab

7.已知(4x3y)(3x2y),并且xy≠0,求

2

2

2

22

2

222

2

2

2

4

4

22

222

88

44

22

x

的值. y

【答案】解:∵(4x3y)(3x2y)

22


(4x3y)(3x2y)0

(4x3y3x2y)(4x3y3x2y)0 (7x5y)(xy)0 7x5y0xy0,∴

8.利用乘法公式计算: (1)198 (2)2004 (3)9810199

【答案】(1)39204 (2)4016016 (3)395 9.计算:(1)3(a2b)(a

2

2

2

2

22

x5x

1 y7y

2

2

2

132

b) 3

(2)(a2)(a2)(a4) (3)(2x3y1)(2x3y5) 【答案】(1)a4b (2)a32a256 (3)9y12y4x12x5 10.已知xy3xy=-7,求: (1)xy的值; (2)xxyy的值; (3)(xy)的值.

【答案】(1)23 (2)30 (3)37

11.已知(xy)5(xy)3,求3xy1的值. 【答案】解:(xy)5,①

2

2

2

2

2

2

2

22

2

22

84

(xy)23,②

由①-②,得(xy)(xy)2

2

2


1 211

3xy131

2211

12.已知a3,求a的值.

aa

112

【答案】解:∵a3,∴(a)9

aa

1122

a229,∴a2927

aa1212

(a)a22725

aa1

a5

a

4xy2,即xy

13.计算:3(21)(21)(21)(21)1

【答案】解:原式(21)(21)(21)(21)(21)(21)1

2

4

8

16

2

4

8

16

(221)(221)(241)(281)(2161)1 (2161)(2161)1

23211232

周滚动练习() [测试范围:8283]



1.下列运算正确的是( ) Aaaa B(2a)6a C(2a1)(2a1)2a1 D(2aa)a2a1

【答案】D

2.单项式乘以多项式依据的运算律是( ) A.加法结合律 B.加法交换律 C.乘法结合律 D.乘法分配律 【答案】D

3.计算(xy)(7xy9xy)的结果正确的是( ) A7xy9xy B7xy9xy

2

5

3

4

2

5

3

4

3

2

2

3

2

2

2

33

6

235


C7xy9xy D7xy9xy 【答案】C

4.下列计算正确的是( ) A3xy5xy2xy B2xy2xy2xy C35xy5xy7xy D(2xy)(2xy)4xy 【答案】C

5.当a=-1时,代数式(a1)a(a3)的值等于( )

A.-4 B4 C.-2 D2 【答案】B

6.如果(xa)(xb)的积中不含有x的一次项,那么ab的关系是( ) A.互为倒数 B.互为相反数 C.相等 D.积为零 【答案】B

7.设(3m2n)(3m2n)P,则P的值是( ) A12mn B24mn C6mn D48mn 【答案】B

8.若ab6ab2,则ab的值为( )

A64 B32 C12 D6 【答案】B

9.如图,在边长为2a的正方形中央剪去一边长为(a2)的小正方形(a2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )

2

2

2

22

2

2

3

2

2

2

3

3

5

4

2

2

2

45544554



Aa4 B2a4a C3a4a4 D4aa2

【答案】C

10.现规定一种运算:ababab,其中ab为实数,则ab(ba)b等于( )

2

2

2

2


Aab Bbb Cb Dba

【答案】B

11.如图,沿正方形的对角线对折,把对折后重合的两个小正方形内的单项式相乘,乘积是________(只要求写出一个结论)

2

2

22



【答案】2a2b

12.计算:a(bc)b(ca)c(ab)________ 【答案】0

13.如果(x3)(x2)xaxb,那么ab的值是________

【答案】-6

14.不等式2x(x1)≤12x(2x5)的解集是________ 【答案】x≤4 15已知边长为a厘米的正方形,若边长减少s厘米,则它的面积减少了________平方厘米. 【答案】(2ass)

16.如果xy=-4xy8,那么代数式xy的值是________ 【答案】-32

17.计算: (1)(x

2

2

2

2

22

133

xy)(12y) 4

32

ab) 4

3

(2)(a2bc)(a2bc) (3)abc(

5

342

(4)3(ab)2(ab) 【答案】(1)4xy9xy(2)ac4b2ac (3)

2

2

2

2

4222abc 3


(4)

3

(ab)2 2

18.计算:(a3)(a3)a(4a) 【答案】4a9

19.先化简,再求值:(a2b)(ba)(ba),其中a=-1b2 【答案】原式4ab5b a=-1b2时,原式=12 20.用简便方法计算: (1)1.02×0.98 (2)201020092011

【答案】解:(1)原式=(10.02)(10.02)10.00040.9996 (2)原式2010(20101)(20101)2010(20101)1

32

21.在(xaxb)(2x3x1)的计算结果中,x的系数是-5x的系数是-6,求a

2

2

2

2

2

2

2

2

b的值.

【答案】解:(xabb)(2x3x1)

2

2

=2x4(32a)x3(13a2b)x2ax3bxb,因为x3的系数是-5x2的系数是

6

所以32a=-5,-13a2b=-6,解得a=-1b=-4 22.有足够多的长方形和正方形卡片,如图所示.



(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝),请画出这个长方形的草图,并运用拼图前后面积之间的关系写出一个等式; (2)小明想用类似的方法解释多项式乘法(a3b)(2ab)2a7ab3b那么需用2卡片________张,3号卡片________张. 【答案】解:(1)如图所示;

2

2




等式为(ab)(a2b)a3ab2b (2)3 7

84 因式分解 1课时 提公因式法

22

知识要点分类练

1.下列式子从左到右的变形是因式分解的是( ) Ax2

2x3x(x2)3 Bx2

2x3(x1)2

4 C(x1)(x3)x2

2x3 Dx2

2x3(x1)(x3) 【答案】D

2.多项式9x2

y3xy2

6xyz中各项的公因式是( ) A3y B3xz C.-3xy D.-3x 【答案】C

3.下列各式中,不能提取公因式的是( )

A12xyz9x2

y2 Ba22abb2



Cx6yx4

z Dx(ab)y(ab)

【答案】B

4.把多项式(m1)(m1)(m1)提取公因式(m1)后,余下的部分是( Am1 B2m C2 Dm2 【答案】D

5.把a2

2a分解因式,正确的是( ) Aa(a2) Ba(a2) Ca(a2

2) Da(2a)

【答案】A

6.分解因式:m(xy)n(xy)________ 【答案】(xy)(mn) 7.分解因式: (1)8a3b2

12ab3

c (2)5(a2)10(a2)

)
【答案】(1)4ab(2a3bc)

(2)15(a2)

规律方法综合练

8.用提公因式法分解因式正确的是( ) A12abc9abc3abc(43ab) B3xy3xy6y3y(xx2y) Caabaca(abc) Dxy5xyyy(x5x) 【答案】C

9.若ab2ab=-1,则代数式abab的值等于________ 【答案】-2 10.分解因式: (1)(a2)a2

(2)a(xy)b(yx)c(xy) 【答案】(1)(a2)(a3) (2)(xy)(abc) 拓广探究创新练

11.阅读下列因式分解的过程,再回答所提出的问题:

22

2

22

2

222

22

22

1xx(x1)x(x1)2

(1x)[1xx(x1)]

(1x)2(1x)(1x)3

(1)上述因式分解的方法是________,共应用了________次; (2)1xx(x1)x(x1)x(x1)________次,分解因式后的结果是________

(3)请用以上方法分解因式:1xx(x1)x(x1)x(x1)(其中n为正整数) 【答案】解:(1)提公因式法 2 (2)2015 (x1)

2016

2

n

2

2015





2

n

(3)1xx(x1)x(x1)x(x1)

(1x)[1xx(x1)x(x1)2x(x1)n1] (1x)2[1xx(x1)x(x1)2x(x1)n2]




(1x)n1

2课时 运用完全平方公式分解因式

知识要点分类练

1.下列各式能用完全平方公式进行分解因式的是( ) Ax1 Bx2x1 Cxx1 Dx4x4 【答案】D

222

2.在多项式①x2xyy;②xy2xy;③xxyy;④4x14x中,能

2

2

2

2

22

22

用完全平方公式分解因式的是( )

A.①② B.②③ C.①④ D.②④ 【答案】D

3.若多项式xmx4能用完全平方公式分解因式,则m的值可以是( ) A4 B.-4 C.±2 D.±4 【答案】D

4.把多项式x6x9分解因式,所得结果正确的是( ) A(x3) B(x3)

Cx(x6)9 D(x3)(x3) 【答案】A 5.利用1a×a的正方形,1b×b的正方形和2a×b的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式是________

2

2

2

2



【答案】a2abb(ab) 6.分解因式: (1)9x6x1 (2)a4ab4b 【答案】(1)(3x1) (2)(a2b)

2

2

2

2

2

2

22


规律方法综合练

7.若4x2kxy9y(2x3y),则k的值是( ) A.-6 B6 C.±6 D.±12 【答案】A

8.把(x1)2(x1)1分解因式的结果是( ) A(x1)(x2) Bx C(x1) D(x2) 【答案】D

9.若ab4,则a2abb的值是( ) A2 B4 C8 D16 【答案】D

10.分解因式:

(1)(ab)6(ab)9 (2)2xyxy

(3)(x2xy)2y(x2xy)y

【答案】(1)(ab3) (2)(xy) (3)(xy) 11.已知xy=-5,求xy2xy的值. 【答案】25

拓广探究创新练

12.若(xy)(xy2)10,求xy的值. 【答案】解:把已知等式变形,得

2

2

2

2

2

2

2

2

2

2

4

2

2

2

2

4

2

2

22

2

22

2

2

2

22

(x2y2)22(x2y2)10

(xy1)0 xy1

3课时 运用平方差公式分解因式

知识要点分类练

1.下列多项式中能用平方差公式分解因式的是( ) Aab Bab

2

2

2

2

2

22

2

2


22

Cab Dyx

2

【答案】A

2.将a1分解因式的结果为( ) Aa(a1) B(a1) C(a1)(a1) Da(a1) 【答案】C

3.将9x分解因式的结果是( ) A(3x) B(3x)(3x) C(9x) D(9x)(9x) 【答案】B

4.分解因式(x1)9的结果是( ) A(x8)(x1) B(x2)(x4) C(x2)(x4) D(x10)(x8) 【答案】B

5.分解因式:mn________ 【答案】(nm)(nm) 6.分解因式: (1)125b

(2)(xy)(xy) (3)25(ab)9(ab) 【答案】(1)(15b)(156) (2)4xy

(3)4(4ab)(a4b) 规律方法综合练

7.分解因式x1的结果为( ) A(x1)(x1) B(x1)(x1) C(x1)(x1)(x1) D(x1)(x1)

32

2

2

2

22

2

2

22

22

22

2

2

2

2

4


【答案】C

8小明在抄因式分解的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x4y(”表示漏抄的指数),则这个指数可能的结果共有( ) A2 B3 C4 D5 【答案】D

9.若mn6,且mn2,则mn________ 【答案】3

10.若n是非零的自然数,则(2n1)1能否被8整除?请说明理由.

【答案】解:能.理由:(2n1)1(2n11)(2n11)2n(2n2)4n(n1).因n(n1)是两个连续自然数的乘积,是偶数,所以4n(n1)一定能被8整除,(2n1)1能被8整除. 拓广探究创新练

2

2

2

2

22

1111)(1)(1)(1) 22324220162

111111

【答案】解:原式(1)(1)(1)(1)(1)(1)

223344

13243520152017



22334420162016120172017



220164032

11.计算:(1知识要点分类练

1.把多项式2x8分解因式,结果正确的是( ) A2(x8) B2(x2) C2(x2)(x2) D2x(x) 【答案】C

2.分解因式:axay________ 【答案】a(xy)(xy)

3.把代数式3x12x12x分解因式,结果正确的是( )

2

A3x(x4x4) B3x(x4)

2

2

2

2

2

(1

11)(1) 20162016

4课时 综合应用提公因式法和公式法分解因式

2

4

x

32


C3x(x2)(x2) D3x(x2)2

【答案】D

4.分解因式:2a2

4a2________ 【答案】2(a1)2

5.将多项式m2

n2mnn分解因式的结果是________ 【答案】n(m1)2 规律方法综合练

6.对于任何整数m,下列各数中能整除多项式(4m5)2

9的是( A8 Bm

Cm1 D2m1 【答案】A

7.若1xn

(1x2

)(1x)(1x),则n________ 【答案】4

8.分解因式:8(a2

1)16a________ 【答案】8(a1)2

9.分解因式:2x(x3)8________ 【答案】2(x1)(x4)

10.把下列各式分解因式; (1)m2

mnmxnx (2)4x2

4xyzy2z2

4z2

【答案】(1)(mn)(mx) (2)(2xyz2z)(2xyz2z) 11.试说明3

2016

3201532014能被15整除.

【答案】解:因为原式3

2014

3232014332014

32014(3231)

32014532013353201315

所以3

2016

3201532014能被15整除.

拓广探究创新练

)
12.先阅读下列材料:

我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等.

(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法. 如:axbybxay(axbx)(ayby) x(ab)y(ab) (ab)(xy)

2xyy21x2 x22xyy21 (xy)21

(xy1)(xy1) (2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:

x22x3 x22x14 (x1)222

(x12)(x12) (x3)(x1)

请你仿照以上方法,分解因式: (1)abab (2)x6x7 (3)a4ab5b

【答案】解:(1)原式=(ab)(ab)(ab)(ab)(ab1) (2)原式=(x7)(x1) (3)原式=(ab)(a5b)

专题训练() 因式分解的综合应用



1.利用因式分解计算: (1)201420142015 (2)0.746×1360.54×13.627.2 (3)2652513525 (4)20220219698 【答案】(1)2015 (2)136

2

2

2

2

2

2

2

2

22

2


本文来源:https://www.wddqw.com/doc/98c06badef3a87c24028915f804d2b160b4e86a4.html