本文整理于网络,仅供阅读参考 反比例函数基本知识 反比例函数基本知识 知识点一: 反比例函数的概念 一般地,如果两个变量x、y之间的关系可以表示成或y=kx-1(k为常数,)的形式,那么称y是x的反比例函数。反比例函数的概念需注意以下几点: (1)k是常数,且k不为零;(2)中分母x的指数为1,如不是反比例函数。(3)自变量x的取值范围是一切实数.(4)自变量y的取值范围是一切实数。 知识点二:反比例函数的图象及性质 反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。 画反比例函数的图象时要注意的问题: (1)画反比例函数图象的方法是描点法; (2)画反比例函数图象要注意自变量的取值范围是,因此不能把两个分支连接起来。 (3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。 本文整理于网络,仅供阅读参考 反比例函数的性质: 的变形形式为(常数)所以: (1)其图象的位置是: 当时,x、y同号,图象在第一、三象限; 当时,x、y异号,图象在第二、四象限。 (2)若点(m,n)在反比例函数的图象上,则点(-m,-n)也在此图象上,故反比例函数的图象关于原点对称。 (3)当时,在每个象限内,y随x的增大而减小; 当时,在每个象限内,y随x的增大而增大; 知识点三:反比例函数解析式的确定 (1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式中,只有一个待定系数k,确定了k的值,也就确定了反比例函数,因此只需给出一组x、y的对应值或图象上点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。 (2)用待定系数法求反比例函数关系式的一般步骤是: ①设所求的反比例函数为:(); ②根据已知条件,列出含k的方程;③解出待定系数k的值; ④把k值代入函数关系式中。 知识点四:用反比例函数解决实际问题 反比例函数的应用须注意以下几点: ①反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题。 ②针对一系列相关数据探究函数自变量与因变量近似满足的函数关系。 ③列出函数关系式后,要注意自变量的取值范围。 本文来源:https://www.wddqw.com/doc/be912633c9d376eeaeaad1f34693daef5ff71322.html