【#高三# 导语】奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是需要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。®文档大全网高三频道给大家整理的《高三年级数学上学期知识点整理》供大家参考,欢迎阅读!
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
1、圆柱体
表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体
表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、正方体
a—边长,S=6a2,V=a3
4、长方体
a—长,b—宽,c—高S=2(ab+ac+bc)V=abc
5、棱柱
S—底面积h—高V=Sh
6、棱锥
S—底面积h—高V=Sh/3
7、棱台
S1和S2—上、下底面积h—高V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1—上底面积,S2—下底面积,S0—中截面积
h—高,V=h(S1+S2+4S0)/6
9、圆柱
r—底半径,h—高,C—底面周长
S底—底面积,S侧—侧面积,S表—表面积C=2πr
S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱
R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)
11、直圆锥
r—底半径h—高V=πr^2h/3
12、圆台
r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/3
13、球
r—半径d—直径V=4/3πr^3=πd^3/6
14、球缺
h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3
15、球台
r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6
16、圆环体
R—环体半径D—环体直径r—环体截面半径d—环体截面直径
V=2π2Rr2=π2Dd2/4
17、桶状体
D—桶腹直径d—桶底直径h—桶高
V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
1、集合的概念
集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。
集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。
2、元素与集合的关系元素与集合的关系有属于和不属于两种:
元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。
3、集合中元素的特性
(1)确定性:设A是一个给定的集合,_是某一具体对象,则_或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。
(2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。
(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。
4、集合的分类
集合科根据他含有的元素个数的多少分为两类:
有限集:含有有限个元素的集合。如“方程3_+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。
无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。
特别的,我们把不含有任何元素的集合叫做空集,记错F,如{|R|+1=0}。
5、特定的集合的表示
为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。
(1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。
(2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。
(3)全体整数的集合通常简称为整数集Z。
(4)全体有理数的集合通常简称为有理数集,记做Q。
(5)全体实数的集合通常简称为实数集,记做R。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
不等式的判定:
①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
②在不等式“a>b”或“a
③不等号的开口所对的数较大,不等号的尖头所对的数较小;
④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。
(1)不等关系
感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
①经历从实际情境中抽象出一元二次不等式模型的过程。
②通过函数图象了解一元二次不等式与相应函数、方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题
①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
(4)基本不等式:
①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的(小)值问题。
正在阅读:
高三年级数学上学期知识点整理11-13
2020个人工作总结范文-中学校长个人工作总结范文10-19
2017年宁夏中级会计职称成绩查询入口02-24
2021年下半年(第79次)上海松江自学考试成绩查询时间:12月1日09-13
银行招聘网:2019辽宁省华夏银行沈阳分行信用卡专业营销团队招聘10-22
中职生军训心得怎么写?新编范例为您送上07-11
山西省2023年度全国初级、中级经济专业技术资格考试公告07-22
2017广东职称英语考试报名网站网址:www.gdkszx.com.cn04-16
2020年广东阳江中级经济师考试成绩合格人员公示(2021年1月6日至19日)09-27
我当志愿者作文600字10-19
法国心理学专业概况及就业前景分析04-06