①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.
②能被5整除的数的特征:个位是0或5。突破口
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
判断能被3(或9)整除的数还可以用“弃3(或9)法”:
例如:8351746能被9整除么?
解:8+1=9,3+6=9,5+4=9,在数字中只剩7,7不是9的倍数,所以8351746不能被9整除。
④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。
⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除,依此反复检验。
例如:判断3546725能否被13整除?
解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.
上述办法也可以用来判断余数和末位数;
对于其他的数,可以将其分解成上述几个互质的数的乘积,再逐个考虑。
正在阅读:
初中奥数数论整除特征基础知识点01-16
2018年辽宁铁岭中考数学试卷05-05
英国留学怎么样才能写出精彩的文书09-22
三年级班会主持词怎么写04-30
马来西亚留学优势专业有哪些02-17
关于母亲节英语作文:母亲的爱12-07