初中数学竞赛分年级吗|初中年级数学竞赛基础训练题

副标题:初中年级数学竞赛基础训练题

时间:2023-05-17 11:07:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

选择题(每小题4分,共24分)
1.(4分)下列计算正确的是(  )
A.a2+b3=2a5B.a4÷a=a4C.a2•a3=a6D.(﹣a2)3=﹣a6
2.(4分)(x﹣a)(x2+ax+a2)的计算结果是(  )
A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a3
3.(4分)下面是某同学在一次检测中的计算摘录:
①3x3•(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2
其中正确的个数有(  )
A.1个B.2个C.3个D.4个
4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是(  )
A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+1
5.(4分)下列分解因式正确的是(  )
A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)
6.(4分)(2003•常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为(  )
A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab
答案:
1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。1923992
分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.
解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;
B、应为a4÷a=a3,故本选项错误;
C、应为a3•a2=a5,故本选项错误;
D、(﹣a2)3=﹣a6,正确.
故选D.
点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.
2.
考点:多项式乘多项式。1923992
分析:根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,计算即可.
解答:解:(x﹣a)(x2+ax+a2),
=x3+ax2+a2x﹣ax2﹣a2x﹣a3,
=x3﹣a3.
故选B.
点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.
3.
考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;整式的除法。1923992
分析:根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的性质,同底数幂的除法的性质,对各选项计算后利用排除法求解.
解答:解:①3x3•(﹣2x2)=﹣6x5,正确;
②4a3b÷(﹣2a2b)=﹣2a,正确;
③应为(a3)2=a6,故本选项错误;
④应为(﹣a)3÷(﹣a)=(﹣a)2=a2,故本选项错误.
所以①②两项正确.
故选B.
点评:本题考查了单项式乘单项式,单项式除单项式,幂的乘方,同底数幂的除法,注意掌握各运算法则.
4
考点:完全平方公式。1923992
专题:计算题。
分析:首先找到它后面那个整数x+1,然后根据完全平方公式解答.
解答:解:x2是一个正整数的平方,它后面一个整数是x+1,
∴它后面一个整数的平方是:(x+1)2=x2+2x+1.
故选C.
点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.
5,
考点:因式分解-十字相乘法等;因式分解的意义。1923992
分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.
解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;
B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;
C、是整式的乘法,不是分解因式,故本选项错误;
D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.
故选B.
点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.
6
考点:因式分解-十字相乘法等;因式分解的意义。1923992
分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.
解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;
B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;
C、是整式的乘法,不是分解因式,故本选项错误;
D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.
故选B.
点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.
6.
考点:列代数式。1923992
专题:应用题。
分析:可绿化部分的面积为=S长方形ABCD﹣S矩形LMPQ﹣S▱RSTK+S重合部分.
解答:解:∵长方形的面积为ab,矩形道路LMPQ面积为bc,平行四边形道路RSTK面积为ac,矩形和平行四边形重合部分面积为c2.
∴可绿化部分的面积为ab﹣bc﹣ac+c2.
故选C.
点评:此题要注意的是路面重合的部分是面积为c2的平行四边形.
用字母表示数时,要注意写法:
①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;
②在代数式中出现除法运算时,一般按照分数的写法来写;
③数字通常写在字母的前面;
④带分数的要写成假分数的形式.

初中年级数学竞赛基础训练题.doc

本文来源:https://www.wddqw.com/kBOx.html