五年级上册奥数题及答案,五年级时钟问题奥数题及答案【三篇】

副标题:五年级时钟问题奥数题及答案【三篇】

时间:2024-03-06 16:53:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#小学奥数# 导语】成功根本没有秘诀可言,如果有的话,就有两个:第一个就是坚持到底,永不言弃;第二个就是当你想放弃的时候,回过头来看看第一个秘诀,坚持到底,永不言弃,学习也是一样需要多做练习。以下是©文档大全网为大家整理的《五年级时钟问题奥数题及答案【三篇】》 供您查阅。

【第一篇】

  现在是3点,什么时候时针与分针第一次重合?

 



【第二篇】

时钟的表盘上按标准的方式标着1,2,3,…,11,12这12个数,在其上任意做n个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.
  解答:(1)当 时,有可能不能覆盖12个数,比如每块扇形错开1个数摆放,盖住的数分别是:(12,1,2,3);(1,2,3,4);(2,3,4,5);(3,4,5,6);(4,5,6,7);(5,6,7,8);(6,7,8,9);(7,8,9,10),都没盖住11,其中的3个扇形当然也不可能盖住全部12个数.

  (2)每个扇形覆盖4个数的情况可能是:

  (1,2,3,4)(5,6,7,8)(9,10,11,12)覆盖全部12个数

  (2,3,4,5)(6,7,8,9)(10,11,12,1)覆盖全部12个数

  (3,4,5,6)(7,8,9,10)(11,12,1,2)覆盖全部12个数

  (4,5,6,7)(8,9,10,11)(12,1,2,3)覆盖全部12个数

  当 时,至少有3个扇形在上面4个组中的一组里,恰好覆盖整个钟面的全部12个数.

  所以n的最小值是9.

【第三篇】



五年级时钟问题奥数题及答案【三篇】.doc

本文来源:https://www.wddqw.com/kRZI.html