小学生奥数行程问题、数学脑筋急转弯练习题

时间:2022-12-02 23:43:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
【#小学奥数# 导语】奥数中有我们平常数学课上所不讲、也没有时间去讲的一些数学分支的基础内容,比如图论、组合数学、数论等等,还有很重要的数学思想,比如构造思想、特殊化思想、化归思想等等。以下是®文档大全网整理的《小学生奥数行程问题、数学脑筋急转弯练习题》相关资料,希望帮助到您。

1.小学生奥数行程问题练习题 篇一

  1、某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米。时速为72千米的列车相遇,错车而过需要几秒钟?
  解:根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),
  某列车的速度为:(250-210)÷(25-23)=40÷2=20(米/秒)
  某列车的车长为:20×25-250=500-250=250(米),
  两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)。
  2、甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?
  答案:从甲到乙顺水速度:234÷9=26(千米/小时)。
  从乙到甲逆水速度:234÷13=18(千米/小时)。
  船速是:(26+18)÷2=22(千米/小时)。
  水速是:(26-18)÷2=4(千米/小时)。 

2.小学生奥数行程问题练习题篇二

  张工程师每天早上8点准时被司机从家接到厂里。一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前_________分钟。

  答案解析:

  第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。

  这道题重要是要求出汽车速度与工程师的速度之比。

3.小学生奥数行程问题练习题 篇三

  1、甲乙两车同时从两地相对开出,甲车每小时行60千米,乙车每小时行55千米,相遇时,甲车比乙车多行了45千米,求两地相距多少千米?

  2、甲乙两车同时从东站开往西站。甲车每小时比乙车多行12千米,甲车行驶4.5小时后到达西站,立即沿原路返回,在距西站31.5千米与乙车相遇,甲车每小时行多少千米?

  3、甲乙两车同时从A、B两地相对开出,第一次在离A地85千米处相遇,相遇后两车继续前进,到站后立即原咱返回;第二次在离B地65千米处相遇,算一算AB两地间的`距离和甲车行的路程。

  4、一辆客车和一辆货车,同时从东、西两地相向而行,客车每小时行56千米,货车每小时行48千米,两车在离中点32千米的地方相遇,求东、西两地的距离是多少千米?

  5、A、B两地相距480千米,甲、乙两车同时从两站相对出发,甲车每小时行35千米,乙车每小进行45千米,一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去,遇到甲车又返回飞向乙车,这样一直飞下去。燕子飞了多少千米两车才能够相遇?

4.小学生奥数行程问题练习题 篇四

  1、小明放学回家,他沿一电车的路线步行,他发现每6分钟,有一辆电车迎面开来;每12分钟,有一辆电车从背后开来。已知每辆电车速度相同,从终点站与起点站的发车间隔时间也相同,那么电车每多少分钟发车一辆?

  2、小峰沿公交车的路线从终点站往起点站走,他出发时恰好有一辆公交车到达终点,在路上,他又遇到了14辆迎面开来的公交车,并于1小时18分后到达起点站,这时候恰好又有一辆公交车从起点开出。已知起点站与终点站相距6000米,公交车的速度为500米/分钟,且每两辆车之间的发车间隔是一定的。求这个发车间隔是几分钟?

  3、一条路上,一个骑车人与一个步行人同向而行,骑车人的。速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人;每隔20分钟有一辆公共汽车超过骑车人。如果公共汽车从始发站每次间隔同样的时间发一辆公共汽车,那么间隔多少分钟发一辆公共汽车? 

5.小学生奥数数学脑筋急转弯练习题 篇五

  老师从写有1~13的13张卡片中抽出9张,分别贴在9位同学的额头上。大家能看到其他8人的数但看不到自己的数。(9位同学都诚实而且聪明,且卡片6、9不能颠倒)老师问:现在知道自己的数的约数个数的同学请举手。有两人举手。手放下之后,有三个人有如下的对话:甲:我知道我是多少了。乙:虽然我不知道我的数是多少,但我已经知道自己的奇偶性了。丙:我的数比乙的小2,比甲的大1。那么,没有被抽出的四张牌上数的和是?
  【答案】
  首先,列举1~13所有数约数个数。每个人只能看到另外8个人头上的数,而要看到8个数就确定自己的数的约数个数,只能是吧约数个数为1、3、4、6的都看到了。所以没抽出的四张牌必定约数个数为2个,都是质数。也就是举手的两名同学头上的数。甲说:“我知道我是多少了”。所以甲头上的数不是质数。乙说:“虽然我不知道我的数是多少,但我已经知道自己的奇偶性了。”也就是说乙现在还不确定自己的数是多少,那么只可能是约数个数2个的,也就是说他头上的数是质数,他又知道奇偶性,所以他看到了其他人头上有2,而乙的数就是一个奇数的质数。丙说:“我的数比乙的小2,比甲的大1。”乙是奇数,丙也是奇数,并且他知道自己的数所以肯定他不是质数,那么丙只能是1或9,而丙还要比甲大1,所以丙只能是9,甲是8,乙是11。那么,质数当中出现了2和11,没抽出的四张牌自然是3、5、7、13和为28。
  

本文来源:https://www.wddqw.com/og9m.html