【#成考# 导语】锲而舍之,朽木不折;锲而不舍,金石可镂。备考也需要这样持之以恒的精神。©文档大全网为您提供2020成人高考专升本《高数一》考点, 巩固所学知识并灵活运用,考试时会更得心应手,快来看看吧!
(1)数列极限的概念
数列数列极限的定义
(2)数列极限的性质
性有界性四则运算法则夹逼定理单调有界数列极限存在定理
(3)函数极限的概念
函数在一点处极限的定义左、右极限及其与极限的关系趋于无穷时函数的极限函数极限的几何意义
(4)函数极限的性质
性四则运算法则夹通定理
(5)无穷小量与无穷大量
无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的阶
(6)两个重要极限
2.要求
(1)理解极限的概念(对极限定义中“”、“”、“”等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。
(4)熟练掌握用两个重要极限求极限的方法。
(三)连续
1.知识范围
(1)函数连续的概念
函数在一点处连续的定义左连续与右连续函数在一点处连续的充分必要条件函数的间断点及其分类
(2)函数在一点处连续的性质
连续函数的四则运算复合函数的连续性反函数的连续性
(3)闭区间上连续函数的性质
有界性定理值与最小值定理介值定理(包括零点定理)
(4)初等函数的连续性
2.要求
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
(2)会求函数的间断点及确定其类型。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。
2020成人高考专升本《高数一》考点:极限.doc