高二数学必修知识点梳理-高二数学重点知识点梳理

时间:2021-09-27 15:06:43 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#高二# 导语】因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。©文档大全网高二频道为你整理了《高二数学重点知识点梳理》,助你金榜题名!

【篇一】高二数学重点知识点梳理


  简单随机抽样的定义:

  一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

  简单随机抽样的特点:

  (1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为

  ;在整个抽样过程中各个个体被抽到的概率为

  (2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;

  (3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.

  (4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样

  简单抽样常用方法:

  (1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.

  (2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率.

【篇二】高二数学重点知识点梳理


  集合的分类:

  (1)按元素属性分类,如点集,数集。

  (2)按元素的个数多少,分为有/无限集

  关于集合的概念:

  (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

  (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

  集合可以根据它含有的元素的个数分为两类:

  含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

  非负整数全体构成的集合,叫做自然数集,记作N;

  在自然数集内排除0的集合叫做正整数集,记作N+或N*;

  整数全体构成的集合,叫做整数集,记作Z;

  有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

  实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的'点一一对应的数。)

  1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.

  有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

  例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.

  无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.

  2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

  例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

  而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为

  {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

  大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

  一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}

  它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

  例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

【篇三】高二数学重点知识点梳理


  函数的性质:

  函数的单调性、奇偶性、周期性

  单调性:定义:注意定义是相对与某个具体的区间而言。

  判定方法有:定义法(作差比较和作商比较)

  导数法(适用于多项式函数)

  复合函数法和图像法。

  应用:比较大小,证明不等式,解不等式。

  奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;

  f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。

  判别方法:定义法,图像法,复合函数法

  应用:把函数值进行转化求解。

  周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

  其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.

  应用:求函数值和某个区间上的函数解析式。

【篇四】高二数学重点知识点梳理

  反函数:

  (1)定义:

  (2)函数存在反函数的条件:

  (3)互为反函数的定义域与值域的关系:

  (4)求反函数的步骤:

  ①将看成关于的方程,解出,若有两解,要注意解的选择;

  ②将互换,得;

  ③写出反函数的定义域(即的值域)。

  (5)互为反函数的图象间的关系:

  (6)原函数与反函数具有相同的单调性;

  (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。

高二数学重点知识点梳理.doc

本文来源:https://www.wddqw.com/smvT.html